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Preliminaries - Interactive Proofs (IPs)

A (binary) relation is a set R = {(x;w)} of
statement-witness pairs.

Goal of an Interactive Proof (of Knowledge):
Prove that a statement x admits a
witness, or
Prove knowledge of a witness w for a
public statement x.

We only consider public-coin protocols, i.e., the
verifier publishes all its randomness during the
protocol execution.

(x;w) ∈ R

P(x;w) V(x)
a0−−−−−−→
c1←−−−−−−
a1−−−−−−→
...
cµ←−−−−−−
aµ−−−−−−→ Accept/

Reject
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Preliminaries - Interactive Oracle Proofs (IOPs)

(x;w) ∈ R

P(x;w) V(x) Oracles
Oa0−−−−−−→ Oa0

c1←−−−−−−
Oa1−−−−−−→ Oa1

...
cµ←−−−−−−

Oaµ
−−−−−−→ Oaµ

ti,j−−−−−−→
yi,j←−−−−−− yi,j ← Oai(ti,j)

Accept/Reject

4 / 39



Preliminaries - Compiling an IOP into an IP
Let [·] be a binding commitment scheme with local openings.

(x;w) ∈ R
P(x;w) V(x)

[a0]−−−−−−→
c1←−−−−−−

[a1]−−−−−−→
...
cµ←−−−−−−

[aµ]−−−−−−→
ti,j←−−−−−−
yi,j−−−−−−−→

Opening info
Accept/Reject
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Preliminaries - Security Properties

Desirable Security Properties:

Completeness: Honest provers always succeed in convincing a verifier.
(Knowledge) Soundness: Dishonest provers (almost) never succeed.
Zero-Knowledge: No information about the witness is revealed.

Soundness: When proving that a statement admits a witness.
Knowledge Soundness: When proving knowledge of a witness.
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Preliminaries - Knowledge Soundness

Knowledge soundness ⇐⇒ existence of a knowledge extractor.

Knowledge extractor
Input: Statement x and oracle access to a prover P∗ attacking the protocol.
Goal: Compute a witness w for statement x.
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Knowledge Extraction – Subtle Difference Between IPs and IOPs

IP: Answers to different queries to a dishonest prover P∗ do not have to be consistent.
Rewinding P∗ and sending a different challenge ci may result in a completely different
message ai (or oracle Oai).

IOP: Answers to different queries to the oracles Oai produced by P∗ have to be consistent.
Queries to Oai on different subsets S and S′ of the coordinates of ai are guaranteed to be
consistent, i.e., output is equal on the intersection S ∩ S′.
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Preliminaries - Interactive Oracle Proofs

(x;w) ∈ R

P(x;w) V(x) Oracles
Oa0−−−−−−→ Oa0

c1←−−−−−−
Oa1−−−−−−→ Oa1

...
cµ←−−−−−−

Oaµ
−−−−−−→ Oaµ

ti,j−−−−−−→
yi,j←−−−−−− yi,j ← Oai(ti,j)

Accept/Reject
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Knowledge Extractor

Hence, knowledge extraction can be (somewhat) easier for IOPs than for IPs.

(Knowledge) soundness of the IOP + binding property of the commitment scheme
=⇒ (knowledge) soundness of the compiled IP

Binding property is typically computational
=⇒ compilation degrades (knowledge) soundness to computational
=⇒ the resulting IP is actually an Interactive Argument

We will focus on knowledge extraction for IPs:
1 This avoids the subtle difference between the different oracles the extractor can query;
2 In practice, IOPs are compiled into IPs anyway.
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Two Equivalent Definitions for Knowledge Soundness
ϵ(x,P∗): success probability of P∗ on public input x.
κ(|x|): knowledge error of the protocol.

Definition (Standard Definition - Knowledge Soundness)
If ϵ(x,P∗) > κ(|x|), knowledge extractor extracts in expected runtime

poly(|x|)
ϵ(x,P∗)− κ(|x|) .

Definition (Alternative Definition - Knowledge Soundness)
Knowledge extractor has expected polynomial runtime and
success probability

ϵ(x,P∗)− κ(|x|)
poly(|x|) .
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Knowledge Soundness - Deterministic Provers

Lemma (Informal)
It is sufficient to consider deterministic provers P∗.

Hence, P∗ always starts with the same message.

Proof.
Let P∗ be a probabilistic prover and Edet and extractor for deterministic provers.
The extractor EP∗ samples the random coins r of P∗ and runs EP

∗[r]
det .

It succeeds with probability

Er

[
ϵ(x,P∗[r])− κ(|x|)

poly(|x|)

]
=

ϵ(x,P∗)− κ(|x|)
poly(|x|) .
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Another Notion for IPs - Special-Soundness

Introduced in the context of Σ-protocols.
Easier to prove special-soundness than
knowledge soundness.

Definition
2-out-of-N special-soundness: Efficient algorithm
to extract a witness w from 2 ‘colliding’ protocol
transcripts (a, c, z) and (a, c′, z′).

2-out-of-N special-soundness implies knowledge
soundness with knowledge error 1/N.

1/N matches the trivial cheating probability.

(x;w) ∈ R

P(x;w) V(x)
a−−−−−−→
c←−−−−−−
z−−−−−−→ Accept/

Reject
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Natural Generalizations of Special-Soundness (1/2)

1 k-out-of-N special-soundness =⇒ knowledge error (k− 1)/N.
Requires k accepting transcripts;
Cheating prover (typically) succeeds if challenge hits (k− 1)-subset guessed by the prover.

2 (k1, . . . , kµ)-out-of-(N1, . . . ,Nµ) special-sound multi-round interactive proofs:
Require a tree of transcripts to recursively extract;
Typical cheating probability

κ = Er(k1, . . . , kµ;N1, . . . ,Nµ) = 1−
µ∏

i=1

(
1− ki − 1

Ni

)
,

(the probability that the adversary guesses a (ki − 1)-subset correctly for some 1 ≤ i ≤ µ).
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(k1, . . . , kµ)-Tree of Transcripts of a (2µ+ 1)-Round Interactive Proof.

a

z1
1 zk1

1

z1,1
2 z1,k2

2 zk1,1
2 zk1,k2

2

z1,1,...,1
µ z1,1,...,kµ

µ zk1,k2,...,1
µ zk1,k2,...,kµ

µ

· · ·

· · · · · ·

· · ·

· · ·

· · · · · ·

c1
1 ck1

1

c1,1
2 c1,k2

2 ck1,1
2 ck1,k2

2
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Extractor Analysis for Special-Sound Interactive Proofs

Extractor Analysis:
Show that special-soundness implies knowledge soundness.

Results: Tight extractor analysis for
(interactive) special-sound protocols [ACK21];
the parallel repetition of special-sound protocols [AF22];

t-fold parallel repetition reduces the knowledge error κ of special-sound inter-
active proofs to κt.

the Fiat-Shamir transform of special-sound protocols [AFK22].

The security loss of the Fiat-Shamir transformation of special-sound protocols
is independent of the number of rounds.
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Knowledge extractor for 2-special-sound protocols

Extractor E with rewindable black-box access to a prover:

Step 1. Query the prover on a random challenge c.
Step 2a. If prover fails, the extractor aborts.
Step 2b. Else the extractor keeps rewinding (fixing the prover’s first message a) and sampling
challenges without replacement until it has found a second accepting transcript or until it has
exhausted all challenges.

Lemma (Runtime)
The expected number of queries to P from E is at most 1 + ϵ1

ϵ = 2.

Lemma (Success Probability)
Extractor E succeeds with probability ϵ if ϵ > 1/N, i.e., it succeeds with probability at least
ϵ− 1/N.

17 / 39



Multi-Round Extractor

Recursive application of the 3-round extractor.
Careful analysis is required.

Theorem
A (k1, . . . , kµ)-special sound protocol is knowledge sound with knowledge error

κ = 1−
µ∏

i=1

(
1− ki − 1

Ni

)
≤

µ∑
i=1

ki − 1
Ni

,

where Ni is the size of the i-th challenge set.

Tightness:
Typically there exists a cheating strategy that succeeds with probability κ.
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Non-Special-Sound Interactive Proofs - Amortization (1/2)

Sometimes additional structure is required to extract from sets of accepting transcripts.

Proving Knowledge of n Pre-Images Zq-Module Homomorphism Ψ

Ψ(x1) = P1 , . . . ,Ψ(xn) = Pn

P(x1,P1, . . . , xn,Pn) V(P1, . . . ,Pn)

c1,...,cn←−−−−−−−−− c1, . . . , cn ←R Zq
z =

∑
i cixi

z−−−−−−−−−→ Ψ(z) ?
=

∑
i ciPi
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Non-Special-Sound Interactive Proofs - Amortization (2/2)

P(x1,P1, . . . , xn,Pn) V(P1, . . . ,Pn)

c1,...,cn←−−−−−−−−− c1, . . . , cn ←R Zq
z =

∑
i cixi

z−−−−−−−−−→ Ψ(z) ?
=

∑
i ciPi

To extract accepting transcripts (c1, z1), . . . , (cn, zn), s.t. c1, . . . , cn is a basis of Zn
q, are

required.
This IP is (qn−1 + 1)-special-sound;

Useless property because q is typically exponentially large, i.e., generic extractor is inefficient.
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Non-Special-Sound Interactive Proofs - Merkle Tree Commitment

Proving Knowledge of Opening x1, . . . , xn of Merkle Tree Commitment P

P(x1, . . . , xn,P) V(P)

i1,...,ik←−−−−−−−−− i1, . . . , ik ←R {1, . . . , n}

xi1 ,...,xik−−−−−−−−−−−→
+Validation Paths

Check local openings.

Extraction requires accepting (i1, x1), . . . , (it, xt), s.t. i1, . . . , it cover {1, . . . , t}.
This IP is

(
(n− 1)k + 1

)
-special-sound;

=⇒ generic knowledge extractor is inefficient.
If indices are chosen pairwise distinct, then the IP is

((n−1
k
)
+ 1

)
-special-sound;

=⇒ generic knowledge extractor is still inefficient for many k and n.
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Non-Special-Sound Interactive Proofs - Parallel Repetition
t-fold parallel repetition of k-special-sound Σ-protocol.

P(w, x) V(x)

A1,...,At−−−−−−−−−→
c1,...,ct←−−−−−−−−− c1, . . . , ct ← C

z1,...,zt−−−−−−−−−→ Check all t transcripts.

Extraction requires accepting (A, c1, z1), . . . , (A, cT, zT), s.t. at least on of the
t-coordinates contains k different challenges.
This IP is

(
(k− 1)t + 1

)
-special-sound;

=⇒ generic knowledge extractor is inefficient.
Different extractor analysis presented at CRYPTO’22 [ACF21], also applicable to
multi-round special-sound interactive proofs.
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A Generalized Special-Soundness Notion (1/2)

The special soundness notion should capture the additional structure required to extract.

Γ ⊆ 2C is a monotone structure if
A ⊆ B ⊆ C and A ∈ Γ implies B ∈ Γ;
C ∈ Γ;
∅ /∈ Γ.
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A Generalized Special-Soundness Notion (2/2)

Γ ⊆ 2C is a monotone structure if
A ⊆ B ⊆ C and A ∈ Γ implies B ∈ Γ’.

A 3-round interactive proof with challenge set C is Γ-out-of-C special-sound, if
there exists an efficient algorithm to extract a witness from accepting transcripts
(a, c1, z1), . . . , (a, ck, zk) with {c1, . . . , ck} ∈ Γ.
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Examples of Γ-special-sound IPs

Examples:

k-special-sound IPs:
Γ = {S ⊆ C : |S| ≥ k}.

Amortization:
C = Zn

q;
Γ = {S ⊆ Zn

q : span(S) = Zn
q}.

Merkle tree IP:
C = {A ⊆ {1, . . . , n} : |A| ≤ k};
Γ = {S ⊆ C : ∪A∈SA = {1, . . . , n}}.
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Next Step: Extractor for Γ-Special-Sound IPs (1/2)
Key Observation:

At any stage the extractor can partition C into a set of “useful” and “useless” challenges.

Suppose the extractor has found accepting transcripts for challenges A ⊆ C with A /∈ Γ.

The function UΓ(A) defines the useful challenges.

Examples:
k-special-sound IPs:

UΓ(A) = C \ A.
Amortization:

C = Zn
q;

UΓ(A) = C \ span(A).
Merkle tree IP:

C = {S ⊆ {1, . . . , n} : |S| ≤ k};
UΓ(A) = {B ∈ C : B 6⊆ ∪S∈AS}.
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Next Step: Useful Challenges

We have to be careful when formally defining the useful challenge function UΓ.

Formal Definition

UΓ : 2C → 2C , S 7→ {c ∈ C \ S : ∃A ∈ Γ s.t. S ⊂ A ∧ A \ {c} /∈ Γ}
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Next Step: Extractor for Γ-Special-Sound IPs (2/2)

We adapt the extractor for k-special-sound IPs.
This adaptation does not work for the knowledge extractor from [ACK21];
It requires the extractor introduced to handle parallel repetition [AF22].

k-special-sound IPs:
Rewind and sample new challenge from C \ A;
(A is the set of challenges for which the extractor has already found accpeting transcripts).

Γ-special-sound IPs:
Rewind and sample new challenge from UΓ(A).
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Properties of the Knowledge Extractor
Expected Run-Time:
The extractor EP∗ makes (in expectation) at most 2KΓ − 1 queries to P∗, where

KΓ := max

{
k ∈ N0 :

∃c1, . . . , ck ∈ C s.t.
ci ∈ UΓ

(
{c1, . . . , ci−1}

)
∀i

}
,

Success Probability:
The extractor succeeds with probability

δΓ(P∗)

KΓ
≥ ϵ(P∗)− κΓ

KΓ(1− κΓ)
,

where κΓ = maxS/∈Γ
|S|
|C| .

This proves knowledge soundness if KΓ is poly(|x|). 29 / 39



Examples
k-special-sound IPs:

Original special-soundness parameter k.
KΓ = k.

Amortization:
C = Zn

q;
Original special-soundness parameter qn−1 + 1;
KΓ = n.

Merkle tree IP:
Original special-soundness parameter (n− 1)k + 1.
KΓ = n− k + 1.

t-fold parallel repetition of k-special-sound IP:
Original special-soundness parameter (k− 1)t + 1.
KΓ = (k− 1)t + 1.
This example still requires another approach [AF22].
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Multiround Interactive Proofs

The approach naturally generalizes to multi-round interactive proofs:

(Γ1, . . . , Γµ)-out-of-(C1, . . . , Cµ) special-soundness.
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The FRI-Protocol: An IOP of Proximity (1/2)
Notation:

0 ≤ ρ ≤ 1
S ⊆ F
n = |S| = 2µ
f(X) ∈ F[X] of degree < ρn = 2k

Then f(S) ∈ Fn is a Reed-Solomon codeword, i.e., f(S) ∈ RS[F, S, ρ].

The FRI protocol aims to prove that a polynomial g : S→ F is of degree < ρn.
s.t. the verifier does not need to query g too often.

Hence, the FRI-protocol aims to prove that g(S) ∈ RS[F, S, ρ].

It is actually an IOP of proximity, i.e., it proves that g(S) has relative Hamming distance at
most 0 ≤ δ < 1 to RS[F, S, ρ].
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The FRI-Protocol: An IOP of Proximity (2/2)

FRI-folding Mechanism (applied recursively).

f : S→ F
P Of(S) V

g(x2) =
f(x) + f(−x)

2 +cf(x)− f(−x)
2x

c←−−−−−−−−− c←R F

Og(S2)

33 / 39



FRI-Protocol: (Knowledge) Soundness Analysis

Trivial cheating probability:

1− δ
(
1− 1
|F|

)log2(ρn) ≤ 1− δ +
log2(ρn)
|F|

The FRI-protocol satisfies the generalized (multi-round) notion of special-soundness, implying
knowledge error:

1− δ

ρn
(
1− 1
|F|

)log2(ρn) ≤ 1− δ

ρn +
log2(ρn)
|F|
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FRI-Protocol: Prior Works + Better Special-Soundness Property1

The original analysis of FRI [BBHR18] gave soundness error:

≈ 1− δ +
2n
|F|

Crucial lemma shows that folding can only decrease relative Hamming distance to RS-code for
small number of challenges.

Using this lemma a different special-soundness property can be derived, implying knowledge
error

1− δ

log(ρn)∏
i=1

(
1− n

2i−1|F|
)
≤ 1− δ +

2n
|F|

1Some details have been omitted
35 / 39



Summary

Generalized special-soundness notion also useful for IOP(P)s.

Special-soundness implies knowledge soundness, instead of ordinary soundness.

Special-soundness easier to prove than (knowledge) soundness.

Random Oracle Model (ROM) not required in the analysis.
Only requires the commitment scheme to be binding.
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Thanks!
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