Distance Preservation for All Polynomial Generators

Sarah Bordage and Alessandro Chiesa EPFL

Lattices Meet Hashes
May 2, 2023

Distance Preservation for All Polynomial Generators

Linear codes

A linear code \mathscr{C} is a linear subspace of \mathbb{F}^{n}.

Linear codes

A linear code \mathscr{C} is a linear subspace of \mathbb{F}^{n}.

A code \mathscr{C} has relative minimum distance $\delta_{\text {min }} \in[0,1]$ if

$$
\forall c, c^{\prime} \in \mathscr{C}, c \neq c^{\prime}: \Delta\left(c, c^{\prime}\right) \geq \delta_{\text {min }} .
$$

$$
\Delta(\cdot, \cdot)=\text { relative Hamming distance }
$$

Linear codes

A linear code \mathscr{C} is a linear subspace of \mathbb{F}^{n}.

A code \mathscr{C} has relative minimum distance $\delta_{\text {min }} \in[0,1]$ if

$$
\begin{gathered}
\forall c, c^{\prime} \in \mathscr{C}, c \neq c^{\prime}: \Delta\left(c, c^{\prime}\right) \geq \delta_{\min } . \\
\Delta(\cdot, \cdot)=\text { relative Hamming distance }
\end{gathered}
$$

$$
\begin{gathered}
\text { A vector } u \in \mathbb{F}^{n} \text { is } \delta \text {-close to } \mathscr{C} \text { if } \\
\min _{c \in \mathscr{C}} \Delta(u, c)=\Delta(u, \mathscr{C})<\delta
\end{gathered}
$$

Linear codes

A linear code \mathscr{C} is a linear subspace of \mathbb{F}^{n}.

$$
\text { A code } \mathscr{C} \text { has relative minimum distance } \delta_{\min } \in[0,1] \text { if }
$$

$$
\begin{aligned}
& \forall c, c^{\prime} \in \mathscr{C}, c \neq c^{\prime}: \Delta\left(c, c^{\prime}\right) \geq \delta_{\min } . \\
& \Delta(\cdot, \cdot)=\text { relative Hamming distance }
\end{aligned}
$$

$$
\begin{gathered}
\text { A vector } u \in \mathbb{F}^{n} \text { is } \delta \text {-close to } \mathscr{C} \text { if } \\
\min _{c \in \mathscr{C}} \Delta(u, c)=\Delta(u, \mathscr{C})<\delta \\
\text { Otherwise, } u \text { is } \delta \text {-far from } \mathscr{C} \text {. }
\end{gathered}
$$

Probabilistic proofs and proximity testing to codes

Probabilistic proofs and proximity testing to codes

Batch Proximity Testing in Interactive Oracle Proofs

- If $x \in L$, then $\exists u_{1}, \ldots, u_{\ell} \in \mathscr{C}$ satisfying all verifier's checks.
- If $\times \notin L$, then any $\left(u_{1}, \ldots, u_{\ell}\right) \in\left(\mathbb{F}^{n}\right)^{\ell}$ falsifies verifier's checks with high probability, given that the u_{i}^{\prime} 's are all close to \mathscr{C}.

\vdots

Batch Proximity Testing in Interactive Oracle Proofs

- If $x \in L$, then $\exists u_{1}, \ldots, u_{\ell} \in \mathscr{C}$ satisfying all verifier's checks.
- If $\times \notin L$, then any $\left(u_{1}, \ldots, u_{\ell}\right) \in\left(\mathbb{F}^{n}\right)^{\ell}$ falsifies verifier's checks with high probability, given that the u_{i}^{\prime} 's are all close to \mathscr{C}.

Needed: check proximity of

$$
u_{1}, \ldots, u_{\ell} \text { to } \mathscr{C} .
$$

Batch Proximity Testing in Interactive Oracle Proofs

- If $x \in L$, then $\exists u_{1}, \ldots, u_{\ell} \in \mathscr{C}$ satisfying all verifier's checks.
- If $\times \notin L$, then any $\left(u_{1}, \ldots, u_{\ell}\right) \in\left(\mathbb{F}^{n}\right)^{\ell}$ falsifies verifier's checks with high probability, given that the u_{i}^{\prime} 's are all close to \mathscr{C}.

Needed: check proximity of

$$
u_{1}, \ldots, u_{\ell} \text { to } \mathscr{C} .
$$

Proximity tests can be expensive, e.g. FRI protocol used in STARKs, Aurora, Ligero, Shockwave, ...

Testing Proximity to Linear Codes

Proximity test for a single vector

Proximity test $(\mathcal{P}, \mathcal{V})$

Given: - linear code $\mathscr{C} \subseteq \mathbb{F}^{n}$

- proximity parameter δ
- purported codeword $u \in \mathbb{F}^{n}$
\mathcal{P} 's inputs: \mathscr{C}, δ, u.
\mathcal{V} 's inputs: \mathscr{C}, δ and oracle access to u.

Proximity test for a single vector

Proximity test $(\mathcal{P}, \mathcal{V})$

Given: - linear code $\mathscr{C} \subseteq \mathbb{F}^{n}$

- proximity parameter δ
- purported codeword $u \in \mathbb{F}^{n}$
\mathcal{P} 's inputs: \mathscr{C}, δ, u.
\mathcal{V} 's inputs: \mathscr{C}, δ and oracle access to u.

Completeness. If $u \in \mathscr{C}$, verifier \mathcal{V} accepts.
Soundness. If $\Delta(u, \mathscr{C}) \geq \delta$, verifier \mathcal{V} rejects with high prob.

Batch proximity test $\left(\mathcal{P}_{\text {batch }}, \mathcal{V}_{\text {batch }}\right)$

Given: - linear code $\mathscr{C} \subseteq \mathbb{F}^{n}$

- proximity parameter δ
- purported codewords $u_{1}, \ldots, u_{\ell} \in \mathbb{F}^{n}$ (oracles)

Batch proximity test using random linear combinations

Batch proximity test $\left(\mathcal{P}_{\text {batch }}, \mathcal{V}_{\text {batch }}\right)$

Given: - linear code $\mathscr{C} \subseteq \mathbb{F}^{n}$

- proximity parameter δ
- purported codewords $u_{1}, \ldots, u_{\ell} \in \mathbb{F}^{n}$ (oracles)

1. $\mathcal{V}_{\text {batch }} \rightarrow \mathcal{P}_{\text {batch }}:\left(z_{1}, \ldots, z_{\ell}\right) \stackrel{\$}{\leftarrow} \mathbb{F}^{\ell}$.
2. $\mathcal{P}_{\text {batch }}$ and $\mathcal{V}_{\text {batch }}$ run $(\mathcal{P}, \mathcal{V})$ to check δ-proximity of $\sum z_{i} u_{i}$ to \mathscr{C}.

Key properties:

- If $u_{1}, \ldots, u_{\ell} \in \mathscr{C}$, then $\sum z_{i} u_{i} \in \mathscr{C}$.
- For every $\delta \in\left(0, \frac{1}{2}\right)$, if $\max _{i} \Delta\left(u_{i}, \mathscr{C}\right) \geq \delta$, then

$$
\operatorname{Pr}_{z_{1}, \ldots, z_{\ell} \leftarrow \mathbb{F}^{\ell}}\left[\Delta\left(\sum z_{i} u_{i}, \mathscr{C}\right)<2 \delta\right] \leq \frac{1}{|\mathbb{F}|}
$$

Correlated agreements

Many situations require a stronger guarantee.

If there are many $\left(z_{1}, \ldots, z_{\ell}\right) \in \mathbb{F}^{\ell}$ such that $\sum z_{i} u_{i}$ is close to \mathscr{C}, it must be because $u_{1}, \ldots, u_{\ell} \in \mathbb{F}^{n}$ have large correlated agreement with the code \mathscr{C} :

$$
\exists T \subseteq[n], \exists c_{1}, \ldots, c_{\ell} \in \mathscr{C} \text { s.t. }\left\{\begin{array}{l}
|T|>(1-\delta) n, \\
\forall i \in[\ell], u_{i \mid T}=c_{i \mid T}
\end{array}\right.
$$

Correlated agreements

Many situations require a stronger guarantee.

If there are many $\left(z_{1}, \ldots, z_{\ell}\right) \in \mathbb{F}^{\ell}$ such that $\sum z_{i} u_{i}$ is close to \mathscr{C}, it must be because $u_{1}, \ldots, u_{\ell} \in \mathbb{F}^{n}$ have large correlated agreement with the code \mathscr{C} :

$$
\exists T \subseteq[n], \exists c_{1}, \ldots, c_{\ell} \in \mathscr{C} \text { s.t. }\left\{\begin{array}{l}
|T|>(1-\delta) n, \\
\forall i \in[\ell], u_{i \mid T}=c_{i \mid T} .
\end{array}\right.
$$

- Example 1. Soundness of IOP system requires oracles u_{1}, \ldots, u_{ℓ} to be close to different codes $\mathscr{C}_{1}, \ldots, \mathscr{C}_{\ell}$ with different rates.
> e.g. Reed-Solomon codes with different degree bounds.

Correlated agreements

Many situations require a stronger guarantee.

If there are many $\left(z_{1}, \ldots, z_{\ell}\right) \in \mathbb{F}^{\ell}$ such that $\sum z_{i} u_{i}$ is close to \mathscr{C}, it must be because $u_{1}, \ldots, u_{\ell} \in \mathbb{F}^{n}$ have large correlated agreement with the code \mathscr{C} :

$$
\exists T \subseteq[n], \exists c_{1}, \ldots, c_{\ell} \in \mathscr{C} \text { s.t. }\left\{\begin{array}{l}
|T|>(1-\delta) n, \\
\forall i \in[\ell], u_{i \mid T}=c_{i \mid T} .
\end{array}\right.
$$

- Example 1. Soundness of IOP system requires oracles u_{1}, \ldots, u_{ℓ} to be close to different codes $\mathscr{C}_{1}, \ldots, \mathscr{C}_{\ell}$ with different rates.
> e.g. Reed-Solomon codes with different degree bounds.
- Example 2. Soundness analysis of IOPs of Proximity for linear codes. [BBHR18, BKS18, BGKS2O, BCIKS2O, BCG2O, ABN22, BLNR22]

Correlated agreement = proximity to interleaved code

Vectors $u_{1}, \ldots, u_{\ell} \in \mathbb{F}^{n}$ have large correlated agreement with \mathscr{C} :

$$
\exists T \subseteq[n], \exists c_{1}, \ldots, c_{\ell} \in \mathscr{C} \text { s.t. }\left\{\begin{array}{l}
|T|>(1-\delta) n, \\
\forall i \in[\ell], u_{i \mid T}=c_{i \mid T} .
\end{array}\right.
$$

Interleaved code

$$
\mathscr{C}^{\ell}:=\left\{C=\left(\begin{array}{c}
-c_{1}- \\
\vdots \\
-c_{\ell^{-}}
\end{array}\right) \in \mathbb{F}^{\ell \times n}: \forall i \in[\ell], c_{i} \in \mathscr{C}\right\}
$$

Correlated agreement = proximity to interleaved code

Vectors $u_{1}, \ldots, u_{\ell} \in \mathbb{F}^{n}$ have large correlated agreement with \mathscr{C} :

$$
\exists T \subseteq[n], \exists c_{1}, \ldots, c_{\ell} \in \mathscr{C} \text { s.t. }\left\{\begin{array}{l}
|T|>(1-\delta) n, \\
\forall i \in[\ell], u_{i \mid T}=c_{i \mid T} .
\end{array}\right.
$$

Interleaved code

$$
\mathscr{C}^{\ell}:=\left\{C=\left(\begin{array}{c}
-c_{1}- \\
\vdots \\
-c_{\ell}-
\end{array}\right) \in \mathbb{F}^{\ell \times n}: \forall i \in[\ell], c_{i} \in \mathscr{C}\right\} \quad U:=\left(\begin{array}{c}
-u_{1}- \\
\vdots \\
-u_{\ell}-
\end{array}\right) \in \mathbb{F}^{\ell \times n}
$$

Correlated agreement = proximity to interleaved code

Vectors $u_{1}, \ldots, u_{\ell} \in \mathbb{F}^{n}$ have large correlated agreement with \mathscr{C} :

$$
\exists T \subseteq[n], \exists c_{1}, \ldots, c_{\ell} \in \mathscr{C} \text { s.t. }\left\{\begin{array}{l}
|T|>(1-\delta) n, \\
\forall i \in[\ell], u_{i \mid T}=c_{i \mid T} .
\end{array}\right.
$$

Interleaved code

$$
\mathscr{C}^{\ell}:=\left\{C=\left(\begin{array}{c}
-c_{1}- \\
\vdots \\
-c_{\ell-}
\end{array}\right) \in \mathbb{F}^{\ell \times n}: \forall i \in[\ell], c_{i} \in \mathscr{C}\right\} \quad U:=\left(\begin{array}{c}
-u_{1}- \\
\vdots \\
-u_{\ell}-
\end{array}\right) \in \mathbb{F}^{\ell \times n}
$$

Correlated agreement $\longleftrightarrow \Delta_{\mathbb{F}^{\ell}}\left(U, \mathscr{C}^{\ell}\right)<\delta$

Maximum distance vs column-wise distance

$$
\mathscr{C} \subseteq \mathbb{F}^{9} \quad U:=\left(\begin{array}{l}
-u_{1}- \\
-u_{2}- \\
-u_{3}- \\
-u_{4}-
\end{array}\right) \in \mathbb{F}^{4 \times 9}
$$

Green = correct Red = error

$$
\begin{gathered}
\max _{i} \Delta\left(u_{i}, \mathscr{C}\right)= \\
\Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right)=
\end{gathered}
$$

Maximum distance vs column-wise distance

$$
\mathscr{C} \subseteq \mathbb{F}^{9} \quad U:=\left(\begin{array}{l}
-u_{1}- \\
-u_{2}- \\
-u_{3}- \\
-u_{4}-
\end{array}\right) \in \mathbb{F}^{4 \times 9}
$$

Green = correct Red = error

$$
\begin{gathered}
\max _{i} \Delta\left(u_{i}, \mathscr{C}\right)=3 / 9 \\
\Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right)=
\end{gathered}
$$

Maximum distance vs column-wise distance

$$
\mathscr{C} \subseteq \mathbb{F}^{9} \quad U:=\left(\begin{array}{l}
-u_{1}- \\
-u_{2}- \\
-u_{3}- \\
-u_{4}-
\end{array}\right) \in \mathbb{F}^{4 \times 9}
$$

Green = correct Red = error

$$
\begin{gathered}
\max _{i} \Delta\left(u_{i}, \mathscr{C}\right)=3 / 9 \\
\Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right)=4 / 9
\end{gathered}
$$

Maximum distance vs column-wise distance

$$
\mathscr{C} \subseteq \mathbb{F}^{9} \quad U:=\left(\begin{array}{l}
-u_{1}- \\
-u_{2}- \\
-u_{3}- \\
-u_{4}-
\end{array}\right) \in \mathbb{F}^{4 \times 9}
$$

Green = correct Red = error

u_{1}
u_{2}
u_{3}
u_{4}

$\max _{i} \Delta\left(u_{i}, \mathscr{C}\right)=3 / 9$

$$
\Delta_{\mathbb{F}^{\ell}}\left(U, \mathscr{C}^{\ell}\right)=4 / 9
$$

Maximum distance vs column-wise distance

$$
\mathscr{C} \subseteq \mathbb{F}^{9} \quad U:=\left(\begin{array}{l}
-u_{1}- \\
-u_{2}- \\
-u_{3}- \\
-u_{4}-
\end{array}\right) \in \mathbb{F}^{4 \times 9}
$$

Green = correct Red = error

$\max _{i} \Delta\left(u_{i}, \mathscr{C}\right)=3 / 9$

$$
\Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right)=4 / 9
$$

$\max _{i} \Delta\left(u_{i}, \mathscr{C}\right)=2 / 9$

Maximum distance vs column-wise distance

$$
\mathscr{C} \subseteq \mathbb{F}^{9} \quad U:=\left(\begin{array}{l}
-u_{1}- \\
-u_{2}- \\
-u_{3}- \\
-u_{4}-
\end{array}\right) \in \mathbb{F}^{4 \times 9}
$$

Green = correct Red = error

$\max _{i} \Delta\left(u_{i}, \mathscr{C}\right)=3 / 9$

$$
\Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right)=4 / 9
$$

$\max _{i} \Delta\left(u_{i}, \mathscr{C}\right)=2 / 9$
$\Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right)=5 / 9$

Distance Preservation to Interleaved Codes

Distance preservation with random linear combinations

Distance preservation. There exists Λ s.t. for every $\delta \in(0, \Lambda)$,

$$
\begin{aligned}
& \Delta_{\mathbb{F}^{\ell}}\left(U, \mathscr{C}^{\ell}\right) \geq \delta \Longrightarrow \operatorname{Pr}_{z \leftarrow \mathbb{F}^{\ell}}[\Delta(z \cdot \boldsymbol{U}, \mathscr{C})<\sigma(\delta)] \leq \tau . \\
&(\sigma(\delta) \approx \delta)
\end{aligned}
$$

Distance preservation with random linear combinations

Distance preservation. There exists Λ s.t. for every $\delta \in(0, \Lambda)$,

$$
\begin{aligned}
& \Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right) \geq \delta \Longrightarrow \operatorname{Pr}_{z \leftarrow \mathbb{F}^{\ell}}[\Delta(z \cdot \boldsymbol{U}, \mathscr{C})<\sigma(\delta)] \leq \tau . \\
&(\sigma(\delta) \approx \delta)
\end{aligned}
$$

Proximity range Λ New distance $\sigma(\delta) \quad$ Error τ

Distance preservation with random linear combinations

Distance preservation. There exists Λ s.t. for every $\delta \in(0, \Lambda)$,

$$
\begin{array}{r}
\Delta_{\mathbb{F}^{l}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right) \geq \delta \Longrightarrow \operatorname{Pr}_{z \leftarrow \mathbb{F}^{\ell}}[\Delta(z \cdot \boldsymbol{U}, \mathscr{C})<\sigma(\delta)] \leq \tau . \\
(\sigma(\delta) \approx \delta)
\end{array}
$$

Proximity range Λ New distance $\sigma(\delta) \quad$ Error τ
$\left.\begin{array}{cccc}\text { [AHIV17] } & \frac{\delta_{\text {min }}}{4} & \delta & \frac{\delta n}{|F|} \\ {[\text { RZ17] }} & \frac{\delta_{\text {min }}}{3} & \delta & \frac{\delta n}{|F|}\end{array}\right\}$ Unique-decoding

Distance preservation with random linear combinations

Distance preservation. There exists Λ s.t. for every $\delta \in(0, \Lambda)$,

$$
\begin{array}{r}
\Delta_{\mathbb{F}^{l}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right) \geq \delta \Longrightarrow \operatorname{Pr}_{z \leftarrow \mathbb{F}^{\ell}}[\Delta(z \cdot \boldsymbol{U}, \mathscr{C})<\sigma(\delta)] \leq \tau . \\
(\sigma(\delta) \approx \delta)
\end{array}
$$

Proximity range Λ New distance $\sigma(\delta) \quad$ Error τ
$\left.\begin{array}{cccc}\text { [AHIV17] } & \frac{\delta_{\text {min }}}{4} & \delta & \frac{\delta n}{|\vec{F}|} \\ \text { [RZ17] } & \frac{\delta_{\text {min }}}{3} & \delta & \frac{\delta n}{|\vec{F}|} \\ \text { [BKS18] } & 1-\sqrt[4]{1-\delta_{\min }+\eta} & \delta-\eta & \frac{2}{\eta^{3}| | \mathbb{F} \mid} \\ {[\mathrm{BGKS} 20]} & 1-\sqrt[3]{1-\delta_{\min }+\eta} & \delta-\eta & \frac{2}{\eta^{2}| | \mathbb{F} \mid}\end{array}\right\}$ Unique-decoding

Distance preservation with random linear combinations

Distance preservation. There exists Λ s.t. for every $\delta \in(0, \Lambda)$,

$$
\begin{array}{r}
\Delta_{\mathbb{F}^{l}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right) \geq \delta \Longrightarrow \operatorname{Pr}_{z \leftarrow \mathbb{F}^{\ell}}[\Delta(z \cdot \boldsymbol{U}, \mathscr{C})<\sigma(\delta)] \leq \tau . \\
(\sigma(\delta) \approx \delta)
\end{array}
$$

Proximity range Λ New distance $\sigma(\delta) \quad$ Error τ
$\left.\begin{array}{cccc}\text { [AHIV17] } & \frac{\delta_{\text {min }}}{4} & \delta & \frac{\delta n}{|\vec{F}|} \\ \text { [RZ17] } & \frac{\delta_{\text {min }}}{3} & \delta & \frac{\delta n}{|\vec{F}|} \\ \text { [BKS18] } & 1-\sqrt[4]{1-\delta_{\min }+\eta} & \delta-\eta & \frac{2}{\eta^{3}| | \mathbb{F} \mid} \\ {[\mathrm{BGKS} 2 \mathrm{~B}]} & 1-\sqrt[3]{1-\delta_{\min }+\eta} & \delta-\eta & \frac{2}{\eta^{2}| | \mathbb{F} \mid}\end{array}\right\}$ Unique-decoding

- $\Lambda=1-\sqrt[3]{1-\delta_{\min }+\eta}$ is sharp for some codes with linear-size alphabet.

Distance preservation with random linear combinations

Distance preservation. There exists Λ s.t. for every $\delta \in(0, \Lambda)$,

$$
\begin{aligned}
& \Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right) \geq \delta \Longrightarrow \operatorname{Pr}_{z \leftarrow \mathbb{F}^{\ell}}[\Delta(z \cdot \boldsymbol{U}, \mathscr{C})<\sigma(\delta)] \leq \tau . \\
&(\sigma(\delta) \approx \delta)
\end{aligned}
$$

Proximity range Λ New distance $\sigma(\delta) \quad$ Error τ
$\left.\begin{array}{cccc}\text { [AHIV17] } & \frac{\delta_{\text {min }}}{4} & \delta & \frac{\delta n}{|\vec{F}|} \\ {[\mathrm{RZ} 17]} & \frac{\delta_{\text {min }}}{3} & \delta & \frac{\delta n}{|\vec{F}|} \\ {[\mathrm{BKS} 18]} & 1-\sqrt[4]{1-\delta_{\min }+\eta} & \delta-\eta & \frac{2}{\eta^{3}| | \mathbb{F} \mid} \\ {[\mathrm{BGKS} 2 \mathrm{O}]} & 1-\sqrt[3]{1-\delta_{\min }+\eta} & \delta-\eta & \frac{2}{\eta^{2}| | \mathbb{F} \mid}\end{array}\right\}$ Unique-decoding

- $\Lambda=1-\sqrt[3]{1-\delta_{\min }+\eta}$ is sharp for some codes with linear-size alphabet.
- Better parameters for specific family of codes (Reed-Solomon) [BCIKS20].

What about distribution \neq uniform?

Possible to sample coefficients from distribution \neq uniform?

What about distribution \neq uniform?

Possible to sample coefficients from distribution \neq uniform?

Example. For every $\eta \in(0,1)$ and every $0<\delta<1-\sqrt[\ell]{1-\delta_{\min }+\eta}$,

$$
\Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right) \geq \delta \stackrel{[\mathrm{BKS} 18]}{\Longrightarrow} \operatorname{Pr}_{x \leftarrow \mathbb{F}}\left[\Delta\left(\left(1, x, x^{2}, \ldots, x^{\ell-1}\right) \cdot \boldsymbol{U}, \mathscr{C}\right)<\delta-\eta\right] \leq\left(\frac{2}{\eta}\right)^{\ell+1} \cdot \frac{\ell-1}{|\mathbb{F}|}
$$

What about distribution \neq uniform?

Possible to sample coefficients from distribution \neq uniform?
Example. For every $\eta \in(0,1)$ and every $0<\delta<1-\sqrt[\ell]{1-\delta_{\min }+\eta}$,

$$
\Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right) \geq \delta \stackrel{[\mathrm{BKS} 18]}{\Longrightarrow} \operatorname{Pr}_{x \leftarrow \mathbb{F}}\left[\Delta\left(\left(1, x, x^{2}, \ldots, x^{\ell-1}\right) \cdot \boldsymbol{U}, \mathscr{C}\right)<\delta-\eta\right] \leq\left(\frac{2}{\eta}\right)^{\ell+1} \cdot \frac{\ell-1}{|\mathbb{F}|}
$$

Why reduce randomness complexity?

- concrete efficiency of IOPs used in real-world (e.g. FRI, STARKs)
- sometimes necessary, e.g. IOPs with linear-time prover [BCL22, BCGL22]

(Recall) Goal : Batch proximity testing

We are looking for generators $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ that allow randomness-efficient batch proximity testing.

(Recall) Goal : Batch proximity testing

We are looking for generators $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ that allow randomness-efficient batch proximity testing.

Batch proximity test $\left(\mathcal{P}_{\text {batch }}, \mathcal{V}_{\text {batch }}\right)$

Given: - linear code $\mathscr{C} \subseteq \mathbb{F}^{n}$

- proximity parameter δ
- purported codewords $u_{1}, \ldots, u_{\ell} \in \mathbb{F}^{n}$ (oracles)

1. $\mathcal{V}_{\text {batch }} \rightarrow \mathcal{P}_{\text {batch }}: \boldsymbol{x} \stackrel{\$}{\leftarrow} \mathbb{F}^{s}$.
2. $\mathcal{P}_{\text {batch }}$ and $\mathcal{V}_{\text {batch }}$ run $(\mathcal{P}, \mathcal{V})$ to check δ-proximity of $\sum G(x)_{i} u_{i}$ to \mathscr{C}.

Distance-Preserving Generators

Warm-up: Epsilon-biased generators

Warm-up: Epsilon-biased generators

Parameters: $\ell \geq s \geq 1$ integers, $\varepsilon \in(0,1)$.

A function $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is an ε-biased generator for \mathbb{F}^{ℓ} if

$$
\forall U \in \mathbb{F}^{\ell \times n}, \quad U \neq \mathbf{0}^{\ell \times n} \Longrightarrow \operatorname{Pr}_{x \leftarrow \mathbb{F}^{s}}\left[G(\boldsymbol{x}) \cdot \boldsymbol{U}=\mathbf{0}^{n}\right] \leq \varepsilon .
$$

Warm-up: Epsilon-biased generators

Parameters: $\ell \geq s \geq 1$ integers, $\varepsilon \in(0,1)$.

A function $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is an ε-biased generator for \mathbb{F}^{ℓ} if

$$
\forall U \in \mathbb{F}^{\ell \times n}, \quad U \neq \mathbf{0}^{\ell \times n} \Longrightarrow \operatorname{Pr}_{x \leftarrow \mathbb{F}^{s}}\left[G(\boldsymbol{x}) \cdot \boldsymbol{U}=\mathbf{0}^{n}\right] \leq \varepsilon .
$$

Numerous applications in theoretical computer science (derandomization, error-correcting codes, probabilistic proofs, ...).

Warm-up: Epsilon-biased generators

Parameters: $\ell \geq s \geq 1$ integers, $\varepsilon \in(0,1)$.

A function $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is an ε-biased generator for \mathbb{F}^{ℓ} if

$$
\forall U \in \mathbb{F}^{\ell \times n}, \quad \boldsymbol{U} \neq \mathbf{0}^{\ell \times n} \Longrightarrow \operatorname{Pr}_{x \leftarrow \mathbb{F}^{s}}\left[G(\boldsymbol{x}) \cdot \boldsymbol{U}=\mathbf{0}^{n}\right] \leq \varepsilon .
$$

Numerous applications in theoretical computer science (derandomization, error-correcting codes, probabilistic proofs, ...).

Seed space
\mathbb{F}^{ℓ}

Generator

$$
G(x)=x
$$

Bias ε
$\frac{1}{|\mathbb{F}|}$

Warm-up: Epsilon-biased generators

Parameters: $\ell \geq s \geq 1$ integers, $\varepsilon \in(0,1)$.

A function $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is an ε-biased generator for \mathbb{F}^{ℓ} if

$$
\forall U \in \mathbb{F}^{\ell \times n}, \quad \boldsymbol{U} \neq \mathbf{0}^{\ell \times n} \Longrightarrow \operatorname{Pr}_{x \leftarrow \mathbb{F}^{s}}\left[G(\boldsymbol{x}) \cdot \boldsymbol{U}=\mathbf{0}^{n}\right] \leq \varepsilon .
$$

Numerous applications in theoretical computer science (derandomization, error-correcting codes, probabilistic proofs, ...).

Seed space
\mathbb{F}^{ℓ}
F

$$
\begin{gathered}
G(\boldsymbol{x})=x \\
G(x)=\left(1, x, \ldots, x^{\ell-1}\right)
\end{gathered}
$$

Generator

Bias ε
$\frac{1}{|\mathbb{F}|}$
$\frac{\ell-1}{|\mathbb{F}|}$

Warm-up: Epsilon-biased generators

Parameters: $\ell \geq s \geq 1$ integers, $\varepsilon \in(0,1)$.

A function $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is an ε-biased generator for \mathbb{F}^{ℓ} if

$$
\forall U \in \mathbb{F}^{\ell \times n}, \quad U \neq \mathbf{0}^{\ell \times n} \Longrightarrow \operatorname{Pr}_{x \leftarrow \mathbb{F}^{s}}\left[G(\boldsymbol{x}) \cdot \boldsymbol{U}=\mathbf{0}^{n}\right] \leq \varepsilon .
$$

Numerous applications in theoretical computer science (derandomization, error-correcting codes, probabilistic proofs, ...).

$$
\begin{array}{cc}
\text { Seed space } & \text { Generator } \\
\mathbb{F}^{\ell} & G(\boldsymbol{x})=\boldsymbol{x} \\
\mathbb{F} & G(x)=\left(1, x, \ldots, x^{\ell-1}\right) \\
\mathbb{F}^{s}, 2^{s}=\ell & G(\boldsymbol{x})=\left(\prod_{i} x_{i}^{b_{i}}\right)_{\boldsymbol{b} \in\{0,1\}^{s}}
\end{array}
$$

Bias ε
$\frac{1}{\left\lvert\, \frac{1}{|F|}\right.} \begin{aligned} & \frac{\ell-1}{|\mathbb{F}|}\end{aligned}$
$\frac{s}{|F|}$

Distance-preserving generators

Parameters: $\Lambda \in(0,1), \sigma:(0,1) \rightarrow(0,1)$ non-increasing fct, $\tau \in(0,1)$.
A function $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is a (Λ, σ, τ)-distance-preserving generator if for every code $\mathscr{C} \subseteq \mathbb{F}^{n}$ and every $\delta \in(0, \Lambda)$:

$$
\forall U \in \mathbb{F}^{\ell \times n}, \quad \Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right) \geq \delta \Longrightarrow \operatorname{Pr}_{\boldsymbol{x} \leftarrow \mathbb{F}^{s}}[\Delta(G(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C})<\sigma(\delta)] \leq \tau
$$

Distance-preserving generators

Parameters: $\Lambda \in(0,1), \sigma:(0,1) \rightarrow(0,1)$ non-increasing fct, $\tau \in(0,1)$.

A function $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is a (Λ, σ, τ)-distance-preserving generator if for every code $\mathscr{C} \subseteq \mathbb{F}^{n}$ and every $\delta \in(0, \Lambda)$:

$$
\forall U \in \mathbb{F}^{\ell \times n}, \quad \Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right) \geq \delta \Longrightarrow \operatorname{Pr}_{x \leftarrow \mathbb{F}^{s}}[\Delta(G(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C})<\sigma(\delta)] \leq \tau
$$

t

Seed space	Generator	Bias ε	Dist. preserving?
\mathbb{F}^{ℓ}	$G(\boldsymbol{x})=\boldsymbol{x}$	$\frac{1}{\|\mathbb{F}\|}$	$\boldsymbol{\checkmark}$
\mathbb{F}	$G(x)=\left(1, x, \ldots, x^{\ell-1}\right)$	$\frac{\ell-1}{\|\mathbb{F}\|}$	$\boldsymbol{\vee}$ [BKS18]
$\mathbb{F}^{s}, 2^{s}=\ell$	$G(\boldsymbol{x})=\left(\prod_{i} x_{i}^{b_{i}}\right)_{\boldsymbol{b} \in\{0,1\}^{s}}$	$\frac{s}{\|\mathbb{F}\|}$	$\boldsymbol{\vee}$ [ABN22]

From prior work: known distance-preserving generators are in particular biased.

Distance-preserving generators

Parameters: $\Lambda \in(0,1), \sigma:(0,1) \rightarrow(0,1)$ non-increasing fct, $\tau \in(0,1)$.

A function $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is a (Λ, σ, τ)-distance-preserving generator if for every code $\mathscr{C} \subseteq \mathbb{F}^{n}$ and every $\delta \in(0, \Lambda)$:

$$
\forall U \in \mathbb{F}^{\ell \times n}, \quad \Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right) \geq \delta \Longrightarrow \operatorname{Pr}_{\boldsymbol{x} \leftarrow \mathbb{F}^{s}}[\Delta(G(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C})<\sigma(\delta)] \leq \tau
$$

Easy fact: G is (Λ, σ, τ)-distance-preserving $\Longrightarrow G$ is τ-biased.
(because G preserves distance to $\left\{\mathbf{0}^{n}\right\}$.)

Distance-preserving generators

Parameters: $\Lambda \in(0,1), \sigma:(0,1) \rightarrow(0,1)$ non-increasing fct, $\tau \in(0,1)$.

A function $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is a (Λ, σ, τ)-distance-preserving generator if for every code $\mathscr{C} \subseteq \mathbb{F}^{n}$ and every $\delta \in(0, \Lambda)$:

$$
\forall U \in \mathbb{F}^{\ell \times n}, \quad \Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right) \geq \delta \Longrightarrow \operatorname{Pr}_{x \leftarrow \mathbb{F}^{s}}[\Delta(G(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C})<\sigma(\delta)] \leq \tau
$$

Easy fact: G is (Λ, σ, τ)-distance-preserving $\Longrightarrow G$ is τ-biased.
(because G preserves distance to $\left\{\mathbf{0}^{n}\right\}$.)

Question: Do all biased generators preserve distance?

Polynomial Generators Preserve Distance

Polynomial generators

Let s, ℓ, d be positive integers such that $d \leq|\mathbb{F}|$ and $\max (s, 2) \leq \ell \leq\binom{ s+d}{s}$.

Polynomial generator

A function $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is a degree-d generator if there exist ℓ linearly independent polynomials $P_{1}, \ldots, P_{\ell} \in \mathbb{F}\left[X_{1}, \ldots, X_{s}\right]$ of total degree at most d such that

$$
\forall \boldsymbol{x} \in \mathbb{F}^{s}, \quad G(\boldsymbol{x})=\left(P_{i}(\boldsymbol{x})\right)_{1 \leq i \leq \ell .} .
$$

Polynomial generators

Let s, ℓ, d be positive integers such that $d \leq|\mathbb{F}|$ and $\max (s, 2) \leq \ell \leq\binom{ s+d}{s}$.

Polynomial generator

A function $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is a degree-d generator if there exist ℓ linearly independent polynomials $P_{1}, \ldots, P_{\ell} \in \mathbb{F}\left[X_{1}, \ldots, X_{s}\right]$ of total degree at most d such that

$$
\forall \boldsymbol{x} \in \mathbb{F}^{s}, \quad G(\boldsymbol{x})=\left(P_{i}(\boldsymbol{x})\right)_{1 \leq i \leq \ell} .
$$

- Any degree- d generator is ε-biased with $\varepsilon=\frac{d}{|\mathbb{F}|}$.

Polynomial generators

Let s, ℓ, d be positive integers such that $d \leq|\mathbb{F}|$ and $\max (s, 2) \leq \ell \leq\binom{ s+d}{s}$.

Polynomial generator

A function $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is a degree-d generator if there exist ℓ linearly independent polynomials $P_{1}, \ldots, P_{\ell} \in \mathbb{F}\left[X_{1}, \ldots, X_{s}\right]$ of total degree at most d such that

$$
\forall \boldsymbol{x} \in \mathbb{F}^{s}, \quad G(\boldsymbol{x})=\left(P_{i}(\boldsymbol{x})\right)_{1 \leq i \leq \ell}
$$

- Any degree- d generator is ε-biased with $\varepsilon=\frac{d}{\mid \mathbb{F}}$.
- Distance-preserving generators from literature are special cases of polynomial generators.

Main result

Theorem

Any degree- d generator $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is (Λ, σ, τ)-distance-preserving. Proximity range $\Lambda \quad$ New distance $\sigma(\delta) \quad$ Error τ

Unique-decoding	$\frac{\delta_{\min }}{d+2}$	δ	$\delta n \cdot \frac{d}{\|\mathbb{F}\|}$
List-decoding	$1-\sqrt[d+2]{1-\delta_{\min }+\eta}$	δ	$\delta n \cdot \frac{\ell+1}{\eta} \cdot \frac{d}{\|\mathbb{F}\|}$

Main result

Theorem

Any degree- d generator $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is (Λ, σ, τ)-distance-preserving. Proximity range $\Lambda \quad$ New distance $\sigma(\delta) \quad$ Error τ

Unique-decoding List-decoding
$1-\sqrt[{\frac{d+2}{} \sqrt[\delta_{\text {min }}]{1-2}}]{1-\delta_{\text {min }}+\eta}$
δ
δ
$\delta n \cdot \frac{d}{|\mathbb{F}|}$
$\delta n \cdot \frac{\ell+1}{\eta} \cdot \frac{d}{|\mathbb{F}|}$

- Implies prior results about distance-preserving generators

Main result

Theorem

Any degree- d generator $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is (Λ, σ, τ)-distance-preserving. Proximity range $\Lambda \quad$ New distance $\sigma(\delta) \quad$ Error τ

Unique-decoding List-decoding
$1-\sqrt[d+2]{\frac{\delta_{\text {min }}}{d+2}} \sqrt{1-\delta_{\text {min }}+\eta}$
δ
δ
$\delta n \cdot \frac{d}{|\mathbb{F}|}$
$\delta n \cdot \frac{\ell+1}{\eta} \cdot \frac{d}{|\mathbb{F}|}$

- Implies prior results about distance-preserving generators
- Improves prior results
> For $G(x)=\left(x^{i}\right)_{0 \leq i<\ell}$, remove from τ the exponential dependence in ℓ from [BKS18]
> Exact distance preservation (instead of approximate)

Application: Proximity gaps for all linear codes

Theorem \Longrightarrow Proximity gaps for all linear codes

Let $\delta \in(0, \Lambda)$. Let \mathscr{C} be a linear code and let $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ be a polynomial generator. Exactly one of the following two statements holds:
(1) $\operatorname{Pr}\left[\Delta\left(G(\boldsymbol{x})^{\top} \cdot \boldsymbol{U}, \mathscr{C}\right)<\delta\right]=1 \quad$ OR
(2) $\operatorname{Pr}\left[\Delta\left(G(\boldsymbol{x})^{\top} \cdot \boldsymbol{U}, \mathscr{C}\right)<\delta\right] \leq \tau$.

Previous work on proximity gaps:

- All linear codes - uniform coefficients, $\delta<\frac{\delta_{\text {min }}}{3}$
- RS codes - uniform coefficients \& powers, $\delta<1-\sqrt{1-\delta_{\text {min }}}$

Application: Proximity gaps for all linear codes

Theorem \Longrightarrow Proximity gaps for all linear codes

Let $\delta \in(0, \Lambda)$. Let \mathscr{C} be a linear code and let $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ be a polynomial generator. Exactly one of the following two statements holds:
(1) $\operatorname{Pr}\left[\Delta\left(G(\boldsymbol{x})^{\top} \cdot \boldsymbol{U}, \mathscr{C}\right)<\delta\right]=1 \quad \mathbf{O R}$
(2) $\operatorname{Pr}\left[\Delta\left(G(\boldsymbol{x})^{\top} \cdot \boldsymbol{U}, \mathscr{C}\right)<\delta\right] \leq \tau$.

Previous work on proximity gaps:

- All linear codes - uniform coefficients, $\delta<\frac{\delta_{\text {min }}}{3}$
- RS codes - uniform coefficients \& powers, $\delta<1-\sqrt{1-\delta_{\text {min }}}$

In fact, nearly all combinations are at the same distance.

$$
\text { If } \Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right) \in(0, \Lambda) \text {, then } \operatorname{Pr}\left[\Delta\left(G(\boldsymbol{x})^{\top} \cdot \boldsymbol{U}, \mathscr{C}\right) \neq \Delta_{\mathbb{F}^{\ell}}\left(\boldsymbol{U}, \mathscr{C}^{\ell}\right)\right] \leq \tau
$$

Technical Overview

Proof overview

Theorem

Any degree- d generator $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is (Λ, σ, τ)-distance-preserving.

	Proximity range Λ	New distance σ	Error τ
Unique-decoding	$\frac{\delta_{\text {min }}}{d+2}$	δ	$\delta n \cdot \frac{d}{\|\mathbb{F}\|}$
List-decoding	$1-\sqrt[d+2]{1-\delta_{\min }+\eta}$	δ	$\delta n \cdot \frac{\ell+1}{\eta} \cdot \frac{d}{\|\vec{F}\|}$

Proof overview

Any univariate degree- d generator $G: \mathbb{F} \rightarrow \mathbb{F}^{\ell}$ is ($\Lambda, \sigma, \tau)$-distance-preserving.

\downarrow

Theorem

Any degree- d generator $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is (Λ, σ, τ)-distance-preserving.

	Proximity range Λ	New distance σ	Error τ
Unique-decoding	$\frac{\delta_{\text {min }}}{d+2}$	δ	$\delta n \cdot \frac{d}{\|\mathbb{F}\|}$
List-decoding	$1-\sqrt[d+2]{1-\delta_{\min }+\eta}$	δ	$\delta n \cdot \frac{\ell+1}{\eta} \cdot \frac{d}{\|\mathbb{F}\|}$

Proof overview

Any univariate degree- d generator $G: \mathbb{F} \rightarrow \mathbb{F}^{\ell}$ is (Λ, σ, τ)-distance-preserving.

\downarrow

Any multivariate degree-d generator $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is ($\Lambda, \sigma, \tau)$-distance-preserving.

Proof overview

Generators from MDS codes are distance-preserving.

\checkmark

Any univariate degree- d generator $G: \mathbb{F} \rightarrow \mathbb{F}^{\ell}$ is ($\Lambda, \sigma, \tau)$-distance-preserving.

Any multivariate degree-d generator $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is ($\Lambda, \sigma, \tau)$-distance-preserving.

Proof overview

Generators from MDS codes are distance-preserving.

∇

Any univariate degree- d generator $G: \mathbb{F} \rightarrow \mathbb{F}^{\ell}$ is ($\Lambda, \sigma, \tau)$-distance-preserving.

Any multivariate degree-d generator $G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is (Λ, σ, τ)-distance-preserving.

Epsilon-biased generators from codes with good distance

Generators from linear codes

Let $\mathcal{L} \subseteq\left\{\mathbb{F}^{s} \rightarrow \mathbb{F}\right\}$ be a \mathbb{F}-linear space and let $\left\{f_{1}, \ldots, f_{\ell}\right\}$ be a basis of \mathcal{L}.

Epsilon-biased generators from codes with good distance

Generators from linear codes

Let $\mathcal{L} \subseteq\left\{\mathbb{F}^{s} \rightarrow \mathbb{F}\right\}$ be a \mathbb{F}-linear space and let $\left\{f_{1}, \ldots, f_{\ell}\right\}$ be a basis of \mathcal{L}. Consider the evaluation map ev:

$$
\begin{aligned}
\mathcal{L} & \rightarrow \mathbb{F}^{N} \\
f & \mapsto\left(f(x): x \in \mathbb{F}^{s}\right)
\end{aligned}, \text { where } N:=|\mathbb{F}|^{s} .
$$

Epsilon-biased generators from codes with good distance

Generators from linear codes

Let $\mathcal{L} \subseteq\left\{\mathbb{F}^{s} \rightarrow \mathbb{F}\right\}$ be a \mathbb{F}-linear space and let $\left\{f_{1}, \ldots, f_{\ell}\right\}$ be a basis of \mathcal{L}. Consider the evaluation map ev: $\begin{aligned} \mathcal{L} & \rightarrow \mathbb{F}^{N} \\ f & \mapsto\left(f(x): x \in \mathbb{F}^{s}\right)\end{aligned}$, where $N:=|\mathbb{F}|^{s}$. We have:

- $\mathscr{D}=\operatorname{ev}(\mathcal{L})$ is a $[N, \ell]$-code.

Epsilon-biased generators from codes with good distance

Generators from linear codes

Let $\mathcal{L} \subseteq\left\{\mathbb{F}^{s} \rightarrow \mathbb{F}\right\}$ be a \mathbb{F}-linear space and let $\left\{f_{1}, \ldots, f_{\ell}\right\}$ be a basis of \mathcal{L}. Consider the evaluation map ev: $\begin{aligned} \mathcal{L} & \rightarrow \mathbb{F}^{N} \\ f & \mapsto\left(f(x): x \in \mathbb{F}^{s}\right)\end{aligned}$, where $N:=|\mathbb{F}|^{s}$. We have:

- $\mathscr{D}=\operatorname{ev}(\mathcal{L})$ is a $[N, \ell]$-code.
- If $\delta_{\min }(\mathscr{D}) \geq 1-\varepsilon$, then $G_{\mathscr{D}}: \begin{array}{ll}\mathbb{F}^{s} & \rightarrow \mathbb{F}^{\ell} \\ x & \mapsto\left(f_{i}(x)\right)_{i \in[\ell]}\end{array}$ is ε-biased.

A small-biased generator from a Reed-Solomon code

Example

$$
\text { Let } \ell \leq|\mathbb{F}| \text {. Consider the encoding map ev: } \begin{array}{ll}
\mathbb{F}[x]_{<\ell} & \rightarrow \mathbb{F}|\mathbb{F}| \\
f & \mapsto(f(x): x \in \mathbb{F})
\end{array}
$$

A small-biased generator from a Reed-Solomon code

Example

Let $\ell \leq|\mathbb{F}|$. Consider the encoding map ev: $\begin{array}{ll}\mathbb{F}[x]_{<\ell} & \rightarrow \mathbb{F}^{|\mathbb{F}|} \\ f & \mapsto(f(x): x \in \mathbb{F})\end{array}$.

- \mathscr{D} is a Reed-Solomon code with parameters $[|\mathbb{F}|, \ell]$.

A small-biased generator from a Reed-Solomon code

Example

Let $\ell \leq|\mathbb{F}|$. Consider the encoding map ev: $\begin{array}{ll}\mathbb{F}[x]_{<\ell} & \rightarrow \mathbb{F}^{|\mathbb{F}|} \\ f & \mapsto(f(x): x \in \mathbb{F})\end{array}$.

- \mathscr{D} is a Reed-Solomon code with parameters $[|\mathbb{F}|, \ell]$.
- It has relative distance $\delta_{\min }(\mathscr{D})=1-\frac{\ell-1}{\mathbb{F}}$.

A small-biased generator from a Reed-Solomon code

Example

Let $\ell \leq|\mathbb{F}|$. Consider the encoding map ev: $\begin{array}{ll}\mathbb{F}[x]_{<\ell} & \rightarrow \mathbb{F}|\mathbb{F}| \\ f & \mapsto(f(x): x \in \mathbb{F})\end{array}$

- \mathscr{D} is a Reed-Solomon code with parameters $[|\mathbb{F}|, \ell]$.
- It has relative distance $\delta_{\min }(\mathscr{D})=1-\frac{\ell-1}{\mathbb{F}}$.
- Let $\left(f_{i}\right)_{i \in[\ell]}$ be a basis of $\mathbb{F}[x]_{<\ell}$.

Then $G_{\mathscr{D}}: \begin{array}{ll}\mathbb{F} & \rightarrow \mathbb{F}^{\ell} \\ x & \mapsto\left(f_{i}(x)\right)_{i \in[\ell]}\end{array} \quad$ is $\frac{\ell-1}{\mathbb{F}}$-biased.

Generators from MDS codes preserve distance

Key Lemma

Let $\mathcal{L} \subseteq\left\{\mathbb{F}^{s} \rightarrow \mathbb{F}\right\}$ be a \mathbb{F}-linear space and let $\left\{f_{1}, \ldots, f_{\ell}\right\}$ be a basis of \mathcal{L}.
Assume that $\mathscr{D}=\operatorname{ev}(\mathcal{L})$ is MDS, meaning $\delta_{\min }(\mathscr{D})=1-\frac{\ell-1}{N} . \quad N:=\left|\mathbb{F}^{S}\right|$

Generators from MDS codes preserve distance

Key Lemma

Let $\mathcal{L} \subseteq\left\{\mathbb{F}^{s} \rightarrow \mathbb{F}\right\}$ be a \mathbb{F}-linear space and let $\left\{f_{1}, \ldots, f_{\ell}\right\}$ be a basis of \mathcal{L}.
Assume that $\mathscr{D}=\operatorname{ev}(\mathcal{L})$ is MDS, meaning $\delta_{\min }(\mathscr{D})=1-\frac{\ell-1}{N} . \quad N:=\left|\mathbb{F}^{S}\right|$
Then $G_{\mathscr{D}}: \begin{array}{ll}\mathbb{F}^{s} & \rightarrow \mathbb{F}^{\ell} \\ x & \mapsto\left(f_{i}(\boldsymbol{x})\right)_{i \in[\ell]}\end{array}$ is $\left\{\begin{array}{l}\text { 1. } \varepsilon \text {-biased for } \varepsilon=\frac{\ell-1}{N}, ~\end{array}\right.$

Generators from MDS codes preserve distance

Key Lemma

Let $\mathcal{L} \subseteq\left\{\mathbb{F}^{s} \rightarrow \mathbb{F}\right\}$ be a \mathbb{F}-linear space and let $\left\{f_{1}, \ldots, f_{\ell}\right\}$ be a basis of \mathcal{L}.
Assume that $\mathscr{D}=\operatorname{ev}(\mathcal{L})$ is MDS, meaning $\delta_{\min }(\mathscr{D})=1-\frac{\ell-1}{N} . \quad N:=\left|\mathbb{F}^{S}\right|$
Then $G_{\mathscr{D}}: \begin{array}{ll}\mathbb{F}^{s} & \rightarrow \mathbb{F}^{\ell} \\ x & \mapsto\left(f_{i}(x)\right)_{i \in[\ell]}\end{array}$ is $\left\{\begin{array}{l}\text { 1. } \varepsilon \text {-biased for } \varepsilon=\frac{\ell-1}{N}, \\ \text { 2. }(\Lambda, \sigma, \tau) \text {-distance-preserving. }\end{array}\right.$

Generators from MDS codes preserve distance

Key Lemma

Let $\mathcal{L} \subseteq\left\{\mathbb{F}^{s} \rightarrow \mathbb{F}\right\}$ be a \mathbb{F}-linear space and let $\left\{f_{1}, \ldots, f_{\ell}\right\}$ be a basis of \mathcal{L}. Assume that $\mathscr{D}=\operatorname{ev}(\mathcal{L})$ is MDS, meaning $\delta_{\min }(\mathscr{D})=1-\frac{\ell-1}{N} . \quad N:=\left|\mathbb{F}^{S}\right|$

$$
\text { Then } G_{\mathscr{D}}: \begin{array}{ll}
\mathbb{F}^{s} & \rightarrow \mathbb{F}^{\ell} \\
x & \mapsto\left(f_{i}(x)\right)_{i \in[\ell]}
\end{array} \text { is }\left\{\begin{array}{l}
\text { 1. } \varepsilon \text {-biased for } \varepsilon=\frac{\ell-1}{N}, \\
\text { 2. }(\Lambda, \sigma, \tau) \text {-distance-preserving. }
\end{array}\right.
$$

Proximity range $\Lambda \quad$ New distance $\sigma(\delta) \quad$ Error τ

Unique-decoding	$\frac{\delta_{\text {min }}}{\ell+1}$	δ	$\delta n \cdot \varepsilon$
List-decoding	$1-\sqrt[\ell+1]{1-\delta_{\min }+\eta}$	δ	$\delta n \cdot \frac{\ell+1}{\eta} \cdot \varepsilon$

Proof of Key Lemma - Unique-decoding regime

Unique-decoding regime: $\delta<\frac{\delta_{\text {min }}}{\ell+1}$

$$
\begin{aligned}
& \text { Assume } \exists A \subseteq \mathbb{F}^{s},|A|>\tau \cdot\left|\mathbb{F}^{s}\right| \text { s.t. } \\
& \quad \forall \boldsymbol{x} \in A, \Delta\left(G_{\mathscr{D}}(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C}\right)<\delta .
\end{aligned}
$$

Proof of Key Lemma - Unique-decoding regime

Unique-decoding regime: $\delta<\frac{\delta_{\text {min }}}{\ell+1}$

$$
\begin{aligned}
& \text { Assume } \exists A \subseteq \mathbb{F}^{s},|A|>\tau \cdot\left|\mathbb{F}^{\boldsymbol{s}}\right| \text { s.t. } \\
& \quad \forall \boldsymbol{x} \in \Delta\left(G_{\mathscr{D}}(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C}\right)<\delta .
\end{aligned}
$$

Step 1. Find $C \in \mathscr{C}^{\ell}$ s.t. $\forall x \in A, \Delta\left(G_{\mathscr{D}}(\boldsymbol{x}) \cdot \boldsymbol{U}, G_{\mathscr{D}}(\boldsymbol{x}) \cdot \mathrm{C}\right)<\delta$.

Proof of Key Lemma - Unique-decoding regime

Unique-decoding regime: $\delta<\frac{\delta_{\text {min }}}{\ell+1}$

$$
\begin{aligned}
& \text { Assume } \exists A \subseteq \mathbb{F}^{s},|A|>\tau \cdot\left|\mathbb{F}^{s}\right| \text { s.t. } \\
& \quad \forall \boldsymbol{x} \in A, \Delta\left(G_{\mathscr{D}}(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C}\right)<\delta .
\end{aligned}
$$

Step 1. Find $C \in \mathscr{C}^{\ell}$ s.t. $\forall x \in A, \Delta\left(G_{\mathscr{D}}(x) \cdot U, G_{\mathscr{D}}(x) \cdot C\right)<\delta$.

- For each $x \in A$, consider $c_{x} \in \mathscr{C}$ that is δ-close to $G_{\mathscr{D}}(x) \cdot U$.

Proof of Key Lemma - Unique-decoding regime

Unique-decoding regime: $\delta<\frac{\delta_{\text {min }}}{\ell+1}$

$$
\begin{aligned}
& \text { Assume } \exists A \subseteq \mathbb{F}^{s},|A|>\tau \cdot\left|\mathbb{F}^{s}\right| \text { s.t. } \\
& \quad \forall \boldsymbol{x} \in A, \Delta\left(G_{\mathscr{D}}(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C}\right)<\delta .
\end{aligned}
$$

Step 1. Find $C \in \mathscr{C}^{\ell}$ s.t. $\forall x \in A, \Delta\left(G_{\mathscr{D}}(x) \cdot U, G_{\mathscr{D}}(x) \cdot C\right)<\delta$.

- For each $x \in A$, consider $c_{x} \in \mathscr{C}$ that is δ-close to $G_{\mathscr{D}}(x) \cdot U$.
- Take ℓ distinct $s_{1}, \ldots, s_{\ell} \in A$.

Proof of Key Lemma - Unique-decoding regime

Unique-decoding regime: $\delta<\frac{\delta_{\text {min }}}{\ell+1}$

$$
\begin{aligned}
& \text { Assume } \exists A \subseteq \mathbb{F}^{s},|A|>\tau \cdot\left|\mathbb{F}^{s}\right| \text { s.t. } \\
& \quad \forall \boldsymbol{x} \in A, \Delta\left(G_{\mathscr{D}}(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C}\right)<\delta .
\end{aligned}
$$

Step 1. Find $C \in \mathscr{C}^{\ell}$ s.t. $\forall x \in A, \Delta\left(G_{\mathscr{D}}(x) \cdot U, G_{\mathscr{D}}(x) \cdot C\right)<\delta$.

- For each $x \in A$, consider $c_{x} \in \mathscr{C}$ that is δ-close to $G_{\mathscr{D}}(x) \cdot U$.
- Take ℓ distinct $s_{1}, \ldots, s_{\ell} \in A$.
- Since \mathscr{D} is MDS*, compute $C \in \mathscr{C}^{\ell}$ s.t. $\forall i \in[\ell], c_{s_{i}}=G_{\mathscr{D}}\left(s_{i}\right) \cdot$ C.
* $[N, \ell]$-code \mathscr{D} is MDS iff for any $S \subseteq \mathbb{F}^{s},|S|=\ell,\left\{G_{\mathscr{D}}(s): s \in S\right\}$ is linearly independent.

Proof of Key Lemma - Unique-decoding regime

Unique-decoding regime: $\delta<\frac{\delta_{\text {min }}}{\ell+1}$

$$
\begin{aligned}
& \text { Assume } \exists A \subseteq \mathbb{F}^{s},|A|>\tau \cdot\left|\mathbb{F}^{s}\right| \text { s.t. } \\
& \quad \forall \boldsymbol{x} \in A, \Delta\left(G_{\mathscr{D}}(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C}\right)<\delta
\end{aligned}
$$

Step 1. Find $C \in \mathscr{C}^{\ell}$ s.t. $\forall x \in A, \Delta\left(G_{\mathscr{D}}(x) \cdot U, G_{\mathscr{D}}(x) \cdot C\right)<\delta$.

- For each $x \in A$, consider $c_{x} \in \mathscr{C}$ that is δ-close to $G_{\mathscr{D}}(x) \cdot U$.
- Take ℓ distinct $s_{1}, \ldots, s_{\ell} \in A$.
- Since \mathscr{D} is MDS, compute $C \in \mathscr{C}^{\ell}$ s.t. $\forall i \in[\ell], c_{s_{i}}=G_{\mathscr{D}}\left(s_{i}\right)$. C.
- Using $\delta<\frac{\delta_{\text {min }}}{\ell+1}$, prove that $\forall \boldsymbol{x} \in A, c_{\boldsymbol{x}}=G_{\mathscr{D}}(\boldsymbol{x}) \cdot C$.

Proof of Key Lemma - Unique-decoding regime

Unique-decoding regime: $\delta<\frac{\delta_{\text {min }}}{\ell+1}$

$$
\begin{aligned}
& \text { Assume } \exists A \subseteq \mathbb{F}^{s},|A|>\tau \cdot\left|\mathbb{F}^{s}\right| \text { s.t. } \\
& \quad \forall \boldsymbol{x} \in A, \Delta\left(G_{\mathscr{D}}(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C}\right)<\delta
\end{aligned}
$$

Step 1. Find $C \in \mathscr{C}^{\ell}$ s.t. $\forall x \in A, \Delta\left(G_{\mathscr{D}}(x) \cdot U, G_{\mathscr{D}}(x) \cdot C\right)<\delta$.

- For each $x \in A$, consider $c_{x} \in \mathscr{C}$ that is δ-close to $G_{\mathscr{D}}(x) \cdot U$.
- Take ℓ distinct $s_{1}, \ldots, s_{\ell} \in A$.
- Since \mathscr{D} is MDS, compute $C \in \mathscr{C}^{\ell}$ s.t. $\forall i \in[\ell], c_{s_{i}}=G_{\mathscr{D}}\left(s_{i}\right)$. C.
- Using $\delta<\frac{\delta_{\text {min }}}{\ell+1}$, prove that $\forall \boldsymbol{x} \in A, c_{x}=G_{\mathscr{D}}(\boldsymbol{x}) \cdot C$.

Step 2. Prove that $\Delta_{\mathbb{F}^{\ell}}(U, C)<\delta . \quad$ (Follows from bias of $G_{\mathscr{D}}$)

Proof of Key Lemma - Unique-decoding regime List-decoding regime

Unique-decoding List-decoding regime: $\delta<1-\sqrt[\ell+1]{1-\delta_{\text {min }}}$

$$
\begin{aligned}
& \text { Assume } \exists A \subseteq \mathbb{F}^{s},|A|>\tau \cdot\left|\mathbb{F}^{s}\right| \text { s.t. } \\
& \quad \forall \boldsymbol{x} \in A, \Delta\left(G_{\mathscr{D}}(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C}\right)<\delta .
\end{aligned}
$$

Step 1. Find $C \in \mathscr{C}^{\ell}$ s.t. $\forall x \in A, \Delta\left(G_{\mathscr{D}}(x) \cdot \boldsymbol{U}, G_{\mathscr{D}}(x) \cdot C\right)<\delta$.

- For each $x \in A$, consider $c_{x} \in \mathscr{C}$ that is δ-close to $G_{\mathscr{D}}(\boldsymbol{x}) \cdot U$.
- Take ℓ distinct $s_{1}, \ldots, s_{\ell} \in A$.
- Since \mathscr{D} is MDS, compute $\mathrm{C} \in \mathscr{C}^{\ell}$ s.t. $\forall i \in[\ell], c_{s_{i}}=G_{\mathscr{D}}\left(s_{i}\right)$. C.
- Using $\delta<\frac{\delta_{\min }}{\ell+1}$, prove that $\forall x \in A, c_{x}=G_{\mathscr{D}}(x) \cdot C . \leftarrow$ FAIL

Step 2. Prove that $\Delta_{\mathbb{F}^{\ell}}(U, C)<\delta . \quad$ (Follows from bias of $G_{\mathscr{D}}$)

Proof of Key Lemma - Unique-decoding regime List-decoding regime

Unique-decoding List-decoding regime: $\delta<1-\sqrt[\ell+1]{1-\delta_{\text {min }}}$

$$
\begin{aligned}
& \text { Assume } \exists A \subseteq \mathbb{F}^{s},|A|>\tau \cdot\left|\mathbb{F}^{s}\right| \text { s.t. } \\
& \quad \forall \boldsymbol{x} \in A, \Delta\left(G_{\mathscr{D}}(\boldsymbol{x}) \cdot U, \mathscr{C}\right)<\delta
\end{aligned}
$$

New Step 1. Find a large subset $B \subseteq A$ and $C \in \mathscr{C}^{\ell}$ such that

$$
\forall \boldsymbol{x} \in B, \Delta\left(G_{\mathscr{D}}(\boldsymbol{x}) \cdot \boldsymbol{U}, G_{\mathscr{D}}(\boldsymbol{x}) \cdot \mathrm{C}\right)<\delta .
$$

More challenging because codewords are very noisy.

Step 2. Prove that $\Delta_{\mathbb{F}^{\ell}}(U, C)<\delta . \quad$ (Follows from bias of $G_{\mathscr{D}}$)

Proof overview

Proof overview

\diamond Consider $G_{\mathscr{D}}: \mathbb{F} \rightarrow \mathbb{F}^{d+1}$
where \mathscr{D} is a RS code of
dimension $d+1$.

Proof overview

\diamond Consider $G_{\mathscr{D}}: \mathbb{F} \rightarrow \mathbb{F}^{d+1}$ where \mathscr{D} is a RS code of dimension $d+1$.
$\diamond G_{\mathscr{D}}$ preserves distance
\Longrightarrow ditto for $G: \mathbb{F} \rightarrow \mathbb{F}^{\ell}$

Proof overview

Generators from MDS codes are distance-preserving.

Any univariate degree- d generator $G: \mathbb{F} \rightarrow \mathbb{F}^{\ell}$ is distance-preserving.

Any multivariate degree- d generator
$G: \mathbb{F}^{s} \rightarrow \mathbb{F}^{\ell}$ is distance-preserving.
\diamond By induction on the number of variables s.

Conclusion

Summary

Any polynomial generator is distance-preserving.

- Our proof covers all previously known distance-preserving generators, and leads to improved parameters and proximity gaps.

Conclusion

Summary

Any polynomial generator is distance-preserving.

- Our proof covers all previously known distance-preserving generators, and leads to improved parameters and proximity gaps.

Future work

- Larger proximity range Λ ? Smaller error probability τ ?
$>\tau$ is sharp in some settings, e.g. $G(x)=\left(x^{i}\right)_{0 \leq i<\ell}$ when $\delta<\delta_{\text {min }} / 2$.

Conclusion

Summary

Any polynomial generator is distance-preserving.

- Our proof covers all previously known distance-preserving generators, and leads to improved parameters and proximity gaps.

Future work

- Larger proximity range Λ ? Smaller error probability τ ?
$>\tau$ is sharp in some settings, e.g. $G(x)=\left(x^{i}\right)_{0 \leq i<\ell}$ when $\delta<\delta_{\text {min }} / 2$.
- New distance-preserving generators? (Yes [AGHP92])
- Are all biased generators also distance-preserving generators?

Thanks!

