Distance Preservation for All Polynomial Generators

Sarah Bordage and Alessandro Chiesa EPFL

> Lattices Meet Hashes May 2, 2023

Distance Preservation for All Polynomial Generators

Sarah Bordage and Alessandro Chiesa EPFL

> Lattices Meet Hashes May 2, 2023

A linear **code** \mathscr{C} is a linear subspace of \mathbb{F}^n .

A code \mathscr{C} has relative minimum **distance** $\delta_{\min} \in [0,1]$ if $\forall c, c' \in \mathscr{C}, c \neq c' : \Delta(c, c') \geq \delta_{\min}.$ $\Delta(\cdot, \cdot) = \text{relative Hamming distance}$ A linear **code** \mathscr{C} is a linear subspace of \mathbb{F}^n .

A code \mathscr{C} has relative minimum **distance** $\delta_{\min} \in [0,1]$ if $\forall c, c' \in \mathscr{C}, c \neq c' : \Delta(c, c') \geq \delta_{\min}.$ $\Delta(\cdot, \cdot) = \text{relative Hamming distance}$

> A vector $u \in \mathbb{F}^n$ is δ -close to \mathscr{C} if $\min_{c \in \mathscr{C}} \Delta(u, c) = \Delta(u, \mathscr{C}) < \delta.$

A linear **code** \mathscr{C} is a linear subspace of \mathbb{F}^n .

A code \mathscr{C} has relative minimum **distance** $\delta_{\min} \in [0,1]$ if $\forall c, c' \in \mathscr{C}, c \neq c' : \Delta(c, c') \geq \delta_{\min}.$ $\Delta(\cdot, \cdot) = \text{relative Hamming distance}$

> A vector $u \in \mathbb{F}^n$ is δ -close to \mathscr{C} if $\min_{c \in \mathscr{C}} \Delta(u, c) = \Delta(u, \mathscr{C}) < \delta$. Otherwise, u is δ -far from \mathscr{C} .

Probabilistic proofs and proximity testing to codes

Probabilistic proofs and proximity testing to codes

Batch Proximity Testing in Interactive Oracle Proofs

- If $x \in L$, then $\exists u_1, \ldots, u_\ell \in \mathscr{C}$ satisfying all verifier's checks.
- If $x \notin L$, then any $(u_1, \ldots, u_\ell) \in (\mathbb{F}^n)^\ell$ falsifies verifier's checks with high probability, given that the u_i 's are all close to \mathscr{C} .

Batch Proximity Testing in Interactive Oracle Proofs

- If $x \in L$, then $\exists u_1, \ldots, u_\ell \in \mathscr{C}$ satisfying all verifier's checks.
- If $x \notin L$, then any $(u_1, \ldots, u_\ell) \in (\mathbb{F}^n)^\ell$ falsifies verifier's checks with high probability, given that the u_i 's are all close to \mathscr{C} .

Batch Proximity Testing in Interactive Oracle Proofs

- If $x \in L$, then $\exists u_1, \ldots, u_\ell \in \mathscr{C}$ satisfying all verifier's checks.
- If $x \notin L$, then any $(u_1, \ldots, u_\ell) \in (\mathbb{F}^n)^\ell$ falsifies verifier's checks with high probability, given that the u_i 's are all close to \mathscr{C} .

Testing Proximity to Linear Codes

Proximity test for a single vector

- Given: linear code $\mathscr{C} \subseteq \mathbb{F}^n$
 - proximity parameter δ
 - purported codeword $u \in \mathbb{F}^n$

 \mathcal{P} 's inputs: \mathscr{C}, δ, u . \mathcal{V} 's inputs: \mathscr{C}, δ and oracle access to u.

Proximity test for a single vector

 $\begin{array}{ll} \textbf{Completeness.} & \text{If } u \in \mathscr{C} \text{, verifier } \mathcal{V} \text{ accepts.} \\ \textbf{Soundness.} & \text{If } \Delta(u, \mathscr{C}) \geq \delta \text{, verifier } \mathcal{V} \text{ rejects with high prob.} \end{array}$

- Given: linear code $\mathscr{C} \subseteq \mathbb{F}^n$
 - proximity parameter δ
 - purported codewords $u_1, \ldots, u_\ell \in \mathbb{F}^n$ (oracles)

[RVW13]

Batch proximity test ($\mathcal{P}_{batch}, \mathcal{V}_{batch}$)

- Given: linear code $\mathscr{C} \subseteq \mathbb{F}^n$
 - proximity parameter δ
 - purported codewords $u_1, \ldots, u_\ell \in \mathbb{F}^n$ (oracles)

1.
$$\mathcal{V}_{\mathsf{batch}} o \mathcal{P}_{\mathsf{batch}} : (z_1, \ldots, z_\ell) \stackrel{\$}{\leftarrow} \mathbb{F}^\ell.$$

2. \mathcal{P}_{batch} and \mathcal{V}_{batch} run $(\mathcal{P}, \mathcal{V})$ to check δ -proximity of $\sum z_i u_i$ to \mathscr{C} .

Key properties:

- If $u_1, \ldots, u_\ell \in \mathscr{C}$, then $\sum z_i u_i \in \mathscr{C}$.
- For every $\delta \in (0, \frac{1}{2})$, if $\max_i \Delta(u_i, \mathscr{C}) \ge \delta$, then

 $\Pr_{z_1,...,z_\ell \leftarrow \mathbb{F}^\ell} \left[\Delta \left(\sum z_i u_i, \mathscr{C} \right) < 2\delta \right] \leq \frac{1}{|\mathbb{F}|}.$

[RVW13]

Many situations require a stronger guarantee.

If there are many $(z_1, \ldots, z_\ell) \in \mathbb{F}^\ell$ such that $\sum z_i u_i$ is close to \mathscr{C} , it must be because $u_1, \ldots, u_\ell \in \mathbb{F}^n$ have large **correlated agreement** with the code \mathscr{C} : $\exists T \subseteq [n], \exists c_1, \ldots, c_\ell \in \mathscr{C}$ s.t. $\begin{cases} |T| > (1 - \delta)n, \\ \forall i \in [\ell], u_i|_T = c_i|_T. \end{cases}$ Many situations require a stronger guarantee.

If there are many $(z_1, \ldots, z_\ell) \in \mathbb{F}^\ell$ such that $\sum z_i u_i$ is close to \mathscr{C} , it must be because $u_1, \ldots, u_\ell \in \mathbb{F}^n$ have large **correlated agreement** with the code \mathscr{C} : $\exists T \subseteq [n], \exists c_1, \ldots, c_\ell \in \mathscr{C}$ s.t. $\begin{cases} |T| > (1 - \delta)n, \\ \forall i \in [\ell], u_i|_T = c_i|_T. \end{cases}$

► Example 1. Soundness of IOP system requires oracles u₁,..., u_ℓ to be close to different codes C₁,..., C_ℓ with different rates.

> e.g. Reed-Solomon codes with different degree bounds.

Many situations require a stronger guarantee.

If there are many $(z_1, \ldots, z_\ell) \in \mathbb{F}^\ell$ such that $\sum z_i u_i$ is close to \mathscr{C} , it must be because $u_1, \ldots, u_\ell \in \mathbb{F}^n$ have large **correlated agreement** with the code \mathscr{C} : $\exists T \subseteq [n], \exists c_1, \ldots, c_\ell \in \mathscr{C}$ s.t. $\begin{cases} |T| > (1 - \delta)n, \\ \forall i \in [\ell], u_i|_T = c_i|_T. \end{cases}$

► Example 1. Soundness of IOP system requires oracles u₁,..., u_ℓ to be close to different codes C₁,..., C_ℓ with different rates.

> e.g. Reed-Solomon codes with different degree bounds.

• **Example 2.** Soundness analysis of IOPs of Proximity for linear codes. [BBHR18, BKS18, BGKS20, BCIKS20, BCG20, ABN22, **B**LNR22]

Correlated agreement = proximity to interleaved code

Vectors $u_1, \ldots, u_{\ell} \in \mathbb{F}^n$ have large **correlated agreement** with \mathscr{C} : $\exists T \subseteq [n], \exists c_1, \ldots, c_{\ell} \in \mathscr{C}$ s.t. $\begin{cases} |T| > (1 - \delta)n, \\ \forall i \in [\ell], u_i|_T = c_i|_T. \end{cases}$

Interleaved code

$$\mathscr{C}^{\ell} := \left\{ egin{aligned} C = \begin{pmatrix} -c_1 - \ dots \ -c_\ell - \end{pmatrix} \in \mathbb{F}^{\ell imes n} : orall i \in [\ell], c_i \in \mathscr{C}
ight\}$$

Correlated agreement = proximity to interleaved code

Vectors $u_1, \ldots, u_{\ell} \in \mathbb{F}^n$ have large **correlated agreement** with \mathscr{C} : $\exists T \subseteq [n], \exists c_1, \ldots, c_{\ell} \in \mathscr{C}$ s.t. $\begin{cases} |T| > (1 - \delta)n, \\ \forall i \in [\ell], u_i|_T = c_i|_T. \end{cases}$

Interleaved code

$$\mathscr{C}^{\ell} := \left\{ \boldsymbol{C} = \begin{pmatrix} -c_1 - \\ \vdots \\ -c_{\ell} - \end{pmatrix} \in \mathbb{F}^{\ell \times n} : \forall i \in [\ell], c_i \in \mathscr{C} \right\} \qquad \boldsymbol{U} := \begin{pmatrix} -u_1 - \\ \vdots \\ -u_{\ell} - \end{pmatrix} \in \mathbb{F}^{\ell \times n}$$

Correlated agreement = proximity to interleaved code

Vectors $u_1, \ldots, u_{\ell} \in \mathbb{F}^n$ have large **correlated agreement** with \mathscr{C} : $\exists T \subseteq [n], \exists c_1, \ldots, c_{\ell} \in \mathscr{C}$ s.t. $\begin{cases} |T| > (1 - \delta)n, \\ \forall i \in [\ell], u_i|_T = c_i|_T. \end{cases}$

Interleaved code

$$\mathscr{C}^{\ell} := \left\{ \boldsymbol{C} = \begin{pmatrix} -c_1 - \\ \vdots \\ -c_{\ell} - \end{pmatrix} \in \mathbb{F}^{\ell \times n} : \forall i \in [\ell], c_i \in \mathscr{C} \right\} \qquad \boldsymbol{U} := \begin{pmatrix} -u_1 - \\ \vdots \\ -u_{\ell} - \end{pmatrix} \in \mathbb{F}^{\ell \times n}$$

 $\mathsf{Correlated} \ \mathsf{agreement} \ \ \longleftrightarrow \ \ \Delta_{\mathbb{F}^\ell}(oldsymbol{U}, \mathscr{C}^\ell) < \delta$

$$\mathscr{C} \subseteq \mathbb{F}^{9} \qquad U := \begin{pmatrix} -u_{1} - \\ -u_{2} - \\ -u_{3} - \\ -u_{4} - \end{pmatrix} \in \mathbb{F}^{4 \times 9}$$
Green = correct
$$u_{1}$$

$$u_{2}$$

$$u_{3}$$

$$u_{4}$$

$$\max_{i} \Delta(u_{i}, \mathscr{C}) =$$

 $\Delta_{\mathbb{F}^{\ell}}(U, \mathscr{C}^{\ell}) =$

$$\mathscr{C} \subseteq \mathbb{F}^{9} \qquad U := \begin{pmatrix} -u_{1} - \\ -u_{2} - \\ -u_{3} - \\ -u_{4} - \end{pmatrix} \in \mathbb{F}^{4 \times 9}$$
Green = correct
$$u_{1}$$

$$u_{2}$$

$$u_{3}$$

$$u_{4}$$

$$\max_{i} \Delta(u_{i}, \mathscr{C}) = 3/9$$

 $\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) =$

8 / 25

$$\mathscr{C} \subseteq \mathbb{F}^{9} \qquad U := \begin{pmatrix} -u_{1} - \\ -u_{2} - \\ -u_{3} - \\ -u_{4} - \end{pmatrix} \in \mathbb{F}^{4 \times 9}$$
Green = correct
$$u_{1}$$

$$u_{2}$$

$$u_{3}$$

$$u_{4}$$

$$\max_{i} \Delta(u_{i}, \mathscr{C}) = 3/9$$

 $\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) = 4/9$

8 / 25

$$\mathscr{C} \subseteq \mathbb{F}^9 \qquad \qquad oldsymbol{U} := egin{pmatrix} -u_1 - \ -u_2 - \ -u_3 - \ -u_4 - \end{pmatrix} \in \mathbb{F}^{4 imes 9}$$

Green = correct Red = error

$$\max_{i} \Delta(u_{i}, \mathscr{C}) = 3/9$$
$$\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) = 4/9$$

$$\mathscr{C} \subseteq \mathbb{F}^9$$
 $U := \begin{pmatrix} -u_1 - \\ -u_2 - \\ -u_3 - \\ -u_4 - \end{pmatrix} \in \mathbb{F}^{4 \times 9}$

Green = correct Red = error

 $\max_i \Delta(u_i, \mathscr{C}) = 3/9$

 $\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) = 4/9$

 $\max_i \Delta(u_i, \mathscr{C}) = 2/9$

8 / 25

$$\mathscr{C} \subseteq \mathbb{F}^9 \qquad \qquad \mathbf{U} := \begin{pmatrix} -u_1 - \\ -u_2 - \\ -u_3 - \\ -u_4 - \end{pmatrix} \in \mathbb{F}^{4 \times 9}$$

Green = correct Red = error

$$\max_{i} \Delta(u_{i}, \mathscr{C}) = 3/9$$
$$\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) = 4/9$$

 $\max_{i} \Delta(u_{i}, \mathscr{C}) = 2/9$ $\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) = 5/9$

Distance Preservation to Interleaved Codes

Distance preservation. There exists
$$\Lambda$$
 s.t. for every $\delta \in (0, \Lambda)$,
 $\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) \geq \delta \implies \Pr_{\boldsymbol{z} \leftarrow \mathbb{F}^{\ell}} \left[\Delta \left(\boldsymbol{z} \cdot \boldsymbol{U}, \mathscr{C} \right) < \sigma(\delta) \right] \leq \tau.$
 $(\sigma(\delta) \approx \delta)$

Distance preservation. There exists
$$\Lambda$$
 s.t. for every $\delta \in (0, \Lambda)$,
 $\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) \geq \delta \implies \Pr_{\boldsymbol{z} \leftarrow \mathbb{F}^{\ell}} \left[\Delta \left(\boldsymbol{z} \cdot \boldsymbol{U}, \mathscr{C} \right) < \sigma(\delta) \right] \leq \tau.$
 $(\sigma(\delta) \approx \delta)$

Proximity range Λ **New distance** $\sigma(\delta)$ **Error** τ

Distance preservation. There exists
$$\Lambda$$
 s.t. for every $\delta \in (0, \Lambda)$,
 $\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) \geq \delta \implies \Pr_{\boldsymbol{z} \leftarrow \mathbb{F}^{\ell}} \left[\Delta \left(\boldsymbol{z} \cdot \boldsymbol{U}, \mathscr{C} \right) < \sigma(\delta) \right] \leq \tau.$
 $(\sigma(\delta) \approx \delta)$

Distance preservation. There exists
$$\Lambda$$
 s.t. for every $\delta \in (0, \Lambda)$,
 $\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) \geq \delta \implies \Pr_{\boldsymbol{z} \leftarrow \mathbb{F}^{\ell}} \left[\Delta \left(\boldsymbol{z} \cdot \boldsymbol{U}, \mathscr{C} \right) < \sigma(\delta) \right] \leq \tau.$
 $(\sigma(\delta) \approx \delta)$

• $\Lambda = 1 - \sqrt[3]{1 - \delta_{\min} + \eta}$ is sharp for some codes with linear-size alphabet.

Distance preservation. There exists
$$\Lambda$$
 s.t. for every $\delta \in (0, \Lambda)$,
 $\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) \geq \delta \implies \Pr_{\boldsymbol{z} \leftarrow \mathbb{F}^{\ell}} \left[\Delta \left(\boldsymbol{z} \cdot \boldsymbol{U}, \mathscr{C} \right) < \sigma(\delta) \right] \leq \tau.$
 $(\sigma(\delta) \approx \delta)$

Λ = 1 - ³√1 - δ_{min} + η is sharp for some codes with linear-size alphabet.
 Better parameters for **specific** family of codes (Reed-Solomon) [BCIKS20].
Possible to sample coefficients from distribution \neq uniform?

Possible to sample coefficients from distribution \neq uniform?

Example. For every $\eta \in (0,1)$ and every $0 < \delta < 1 - \sqrt[\ell]{1 - \delta_{\min} + \eta}$,

$$\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) \geq \delta \stackrel{[\mathsf{BKS18}]}{\Longrightarrow} \Pr_{\boldsymbol{x} \leftarrow \mathbb{F}} \left[\Delta \left((1, \boldsymbol{x}, \boldsymbol{x}^{2}, \dots, \boldsymbol{x}^{\ell-1}) \cdot \boldsymbol{U}, \mathscr{C} \right) < \delta - \eta \right] \leq \left(\frac{2}{\eta} \right)^{\ell+1} \cdot \frac{\ell - 1}{|\mathbb{F}|}$$

Possible to sample coefficients from distribution \neq uniform?

Example. For every $\eta \in (0,1)$ and every $0 < \delta < 1 - \sqrt[\ell]{1-\delta_{\min}+\eta}$,

$$\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) \geq \delta \stackrel{[\mathsf{BKS18}]}{\Longrightarrow} \Pr_{x \leftarrow \mathbb{F}} \left[\Delta \left((1, x, x^2, \dots, x^{\ell-1}) \cdot \boldsymbol{U}, \mathscr{C} \right) < \delta - \eta \right] \leq \left(\frac{2}{\eta} \right)^{\ell+1} \cdot \frac{\ell - 1}{|\mathbb{F}|}$$

Why reduce randomness complexity?

- concrete efficiency of IOPs used in real-world (e.g. FRI, STARKs)
- ▶ sometimes necessary, e.g. IOPs with linear-time prover [BCL22, BCGL22]

We are looking for generators $G \colon \mathbb{F}^s \to \mathbb{F}^\ell$ that allow randomness-efficient batch proximity testing.

We are looking for generators $G \colon \mathbb{F}^s \to \mathbb{F}^\ell$ that allow randomness-efficient batch proximity testing.

Batch proximity test ($\mathcal{P}_{batch}, \mathcal{V}_{batch}$)

Given: – linear code
$$\mathscr{C} \subseteq \mathbb{F}^n$$

- proximity parameter δ
- purported codewords $u_1, \ldots, u_\ell \in \mathbb{F}^n$ (oracles)

1.
$$\mathcal{V}_{\mathsf{batch}} o \mathcal{P}_{\mathsf{batch}}: x \stackrel{\$}{\leftarrow} \mathbb{F}^{s}.$$

2. \mathcal{P}_{batch} and \mathcal{V}_{batch} run $(\mathcal{P}, \mathcal{V})$ to check δ -proximity of $\sum G(\boldsymbol{x})_i u_i$ to \mathscr{C} .

Distance-Preserving Generators

Parameters: $\ell \ge s \ge 1$ integers, $\epsilon \in (0, 1)$.

A function $G : \mathbb{F}^s \to \mathbb{F}^{\ell}$ is an ε -biased generator for \mathbb{F}^{ℓ} if $\forall \boldsymbol{U} \in \mathbb{F}^{\ell \times n}, \quad \boldsymbol{U} \neq \boldsymbol{0}^{\ell \times n} \implies \Pr_{\boldsymbol{x} \leftarrow \mathbb{F}^s} \left[G(\boldsymbol{x}) \cdot \boldsymbol{U} = \boldsymbol{0}^n \right] \leq \varepsilon.$

Parameters: $\ell \ge s \ge 1$ integers, $\epsilon \in (0, 1)$.

A function $G \colon \mathbb{F}^s \to \mathbb{F}^\ell$ is an ε -biased generator for \mathbb{F}^ℓ if $\forall \boldsymbol{U} \in \mathbb{F}^{\ell \times n}, \quad \boldsymbol{U} \neq \boldsymbol{0}^{\ell \times n} \implies \Pr_{\boldsymbol{x} \leftarrow \mathbb{F}^s} [G(\boldsymbol{x}) \cdot \boldsymbol{U} = \boldsymbol{0}^n] \leq \varepsilon.$

Parameters: $\ell \ge s \ge 1$ integers, $\epsilon \in (0, 1)$.

A function $G: \mathbb{F}^s \to \mathbb{F}^\ell$ is an ε -biased generator for \mathbb{F}^ℓ if $\forall U \in \mathbb{F}^{\ell \times n}, \quad U \neq \mathbf{0}^{\ell \times n} \implies \Pr_{x \leftarrow \mathbb{F}^s} [G(x) \cdot U = \mathbf{0}^n] \leq \varepsilon.$

Seed space	Generator	Bias $arepsilon$
\mathbb{F}^{ℓ}	$G({m x})={m x}$	$\frac{1}{ \mathbb{F} }$

Parameters: $\ell \ge s \ge 1$ integers, $\epsilon \in (0, 1)$.

A function $G: \mathbb{F}^s \to \mathbb{F}^\ell$ is an ε -biased generator for \mathbb{F}^ℓ if $\forall \boldsymbol{U} \in \mathbb{F}^{\ell \times n}, \quad \boldsymbol{U} \neq \boldsymbol{0}^{\ell \times n} \implies \Pr_{\boldsymbol{x} \leftarrow \mathbb{F}^s} \left[G(\boldsymbol{x}) \cdot \boldsymbol{U} = \boldsymbol{0}^n \right] \leq \varepsilon.$

Seed space	Generator	Bias <mark>e</mark>
\mathbb{F}^{ℓ}	$G(oldsymbol{x})=oldsymbol{x}$	$\frac{1}{ \mathbb{F} }$
\mathbb{F}	$G(x) = (1, x, \dots, x^{\ell-1})$	$\frac{\ell-1}{ \mathbb{F} }$

Parameters: $\ell \ge s \ge 1$ integers, $\epsilon \in (0, 1)$.

A function $G: \mathbb{F}^s \to \mathbb{F}^\ell$ is an ε -biased generator for \mathbb{F}^ℓ if $\forall \boldsymbol{U} \in \mathbb{F}^{\ell \times n}, \quad \boldsymbol{U} \neq \boldsymbol{0}^{\ell \times n} \implies \Pr_{\boldsymbol{x} \leftarrow \mathbb{F}^s} \left[G(\boldsymbol{x}) \cdot \boldsymbol{U} = \boldsymbol{0}^n \right] \leq \varepsilon.$

Seed space	Generator	Bias <mark>e</mark>
\mathbb{F}^{ℓ}	$G(oldsymbol{x})=oldsymbol{x}$	$\frac{1}{ \mathbb{F} }$
\mathbb{F}	$G(x) = (1, x, \ldots, x^{\ell-1})$	$\frac{\ell-1}{ \mathbb{F} }$
\mathbb{F}^{s} , $2^{s} = \ell$	$G(\boldsymbol{x}) = (\prod_i x_i^{b_i})_{\boldsymbol{b} \in \{0,1\}^s}$	$\frac{s}{ \mathbb{F} }$

A function $G : \mathbb{F}^s \to \mathbb{F}^{\ell}$ is a (Λ, σ, τ) -distance-preserving generator if for every code $\mathscr{C} \subseteq \mathbb{F}^n$ and every $\delta \in (0, \Lambda)$:

 $\forall \boldsymbol{U} \in \mathbb{F}^{\ell \times n}, \quad \Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) \geq \delta \implies \Pr_{\boldsymbol{x} \leftarrow \mathbb{F}^{\delta}} \left[\Delta \left(G(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C} \right) < \sigma(\delta) \right] \leq \tau.$

A function $G: \mathbb{F}^s \to \mathbb{F}^{\ell}$ is a (Λ, σ, τ) -distance-preserving generator if for every code $\mathscr{C} \subseteq \mathbb{F}^n$ and every $\delta \in (0, \Lambda)$:

 $\forall \boldsymbol{U} \in \mathbb{F}^{\ell \times n}, \quad \Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) \geq \delta \implies \Pr_{\boldsymbol{x} \leftarrow \mathbb{F}^{s}} \left[\Delta \left(G(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C} \right) < \boldsymbol{\sigma}(\delta) \right] \leq \tau.$

t Seed space Generator Bias ε Dist. preserving? \mathbb{F}^{ℓ} G(x) = x $\frac{1}{|\mathbb{F}|}$ \checkmark \mathbb{F} $G(x) = (1, x, \dots, x^{\ell-1})$ $\frac{\ell-1}{|\mathbb{F}|}$ \checkmark [BKS18] $\mathbb{F}^{s}, 2^{s} = \ell$ $G(x) = (\prod_{i} x_{i}^{b_{i}})_{b \in \{0,1\}^{s}}$ $\frac{s}{|\mathbb{F}|}$ \checkmark [ABN22]

From prior work: known distance-preserving generators are in particular biased.

A function $G : \mathbb{F}^s \to \mathbb{F}^{\ell}$ is a (Λ, σ, τ) -**distance-preserving generator** if for every code $\mathscr{C} \subseteq \mathbb{F}^n$ and every $\delta \in (0, \Lambda)$:

 $\forall \boldsymbol{U} \in \mathbb{F}^{\ell \times n}, \quad \Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) \geq \delta \implies \Pr_{\boldsymbol{x} \leftarrow \mathbb{F}^{s}} \left[\Delta \left(G(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C} \right) < \sigma(\delta) \right] \leq \tau.$

Easy fact: G is (Λ, σ, τ) -distance-preserving $\implies G$ is τ -biased. (because G preserves distance to $\{0^n\}$.)

A function $G: \mathbb{F}^s \to \mathbb{F}^\ell$ is a (Λ, σ, τ) -distance-preserving generator if for every code $\mathscr{C} \subseteq \mathbb{F}^n$ and every $\delta \in (0, \Lambda)$: $\forall \boldsymbol{U} \in \mathbb{F}^{\ell \times n}, \quad \Delta_{\mathbb{F}^\ell}(\boldsymbol{U}, \mathscr{C}^\ell) \geq \delta \implies \Pr_{\boldsymbol{x} \leftarrow \mathbb{F}^s} [\Delta (G(\boldsymbol{x}) \cdot \boldsymbol{U}, \mathscr{C}) < \sigma(\delta)] \leq \tau.$

Easy fact: G is (Λ, σ, τ) -distance-preserving $\implies G$ is τ -biased. (because G preserves distance to $\{0^n\}$.)

Question: Do all biased generators preserve distance?

Polynomial Generators Preserve Distance

Let s, ℓ, d be positive integers such that $d \leq |\mathbb{F}|$ and $\max(s, 2) \leq \ell \leq {s+d \choose s}$.

Polynomial generator

A function $G: \mathbb{F}^s \to \mathbb{F}^{\ell}$ is a *degree-d generator* if there exist ℓ linearly independent polynomials $P_1, \ldots, P_{\ell} \in \mathbb{F}[X_1, \ldots, X_s]$ of total degree at most d such that $\forall \boldsymbol{x} \in \mathbb{F}^s, \qquad G(\boldsymbol{x}) = (P_i(\boldsymbol{x}))_{1 \le i \le \ell}.$ Let s, ℓ, d be positive integers such that $d \leq |\mathbb{F}|$ and $\max(s, 2) \leq \ell \leq {s+d \choose s}$.

Polynomial generator

A function $G: \mathbb{F}^s \to \mathbb{F}^{\ell}$ is a *degree-d generator* if there exist ℓ linearly independent polynomials $P_1, \ldots, P_{\ell} \in \mathbb{F}[X_1, \ldots, X_s]$ of total degree at most d such that $\forall \boldsymbol{x} \in \mathbb{F}^s, \qquad G(\boldsymbol{x}) = (P_i(\boldsymbol{x}))_{1 \le i \le \ell}.$

• Any degree-*d* generator is ε -biased with $\varepsilon = \frac{d}{||\mathbf{F}||}$.

(Schwartz-Zippel)

Let s, ℓ, d be positive integers such that $d \leq |\mathbb{F}|$ and $\max(s, 2) \leq \ell \leq {s+d \choose s}$.

Polynomial generator

A function $G: \mathbb{F}^s \to \mathbb{F}^{\ell}$ is a *degree-d generator* if there exist ℓ linearly independent polynomials $P_1, \ldots, P_{\ell} \in \mathbb{F}[X_1, \ldots, X_s]$ of total degree at most d such that $\forall \boldsymbol{x} \in \mathbb{F}^s, \qquad G(\boldsymbol{x}) = (P_i(\boldsymbol{x}))_{1 \le i \le \ell}.$

- Any degree-*d* generator is ε -biased with $\varepsilon = \frac{d}{||F||}$. (Schwartz-Zippel)
- Distance-preserving generators from literature are special cases of polynomial generators.

Main result

Theorem			
meorem			
Any degre	ee- d generator $G\colon \mathbb{F}^s o \mathbb{F}^\ell$ is	(Λ, σ, τ) -distance-p	reserving.
	Proximity range Λ	New distance $\sigma(oldsymbol{\delta})$	Error $ au$
Unique-dec	oding $\frac{\delta_{\min}}{d+2}$	δ	$\delta n \cdot rac{d}{ \mathbb{F} }$
List-decoo	ding $1 - \sqrt[d+2]{1 - \delta_{\min} + \eta}$	δ	$\delta n \cdot rac{\ell+1}{\eta} \cdot rac{d}{ \mathbb{F} }$

Main result

Theorem			
Any degr	ee- d generator $G\colon \mathbb{F}^s o \mathbb{F}^\ell$ is	(Λ, σ, τ) -distance-p	reserving.
	Proximity range Λ	New distance $\sigma(\delta)$	Error $ au$
Unique-dec	oding $\frac{\delta_{\min}}{d+2}$	δ	$\delta n \cdot rac{d}{ \mathbb{F} }$
List-deco	$\lim_{d \to \infty} 1 - \sqrt[d+2]{1 - \delta_{\min} + \eta}$	δ	$\delta n \cdot rac{\ell+1}{\eta} \cdot rac{d}{ \mathbb{F} }$

• Implies prior results about distance-preserving generators

Main result

 Theorem			
meorem			
Any degr	ee- d generator $G\colon \mathbb{F}^s o \mathbb{F}^\ell$ is	(Λ, σ, τ) -distance-p	reserving.
	Proximity range Λ	New distance $\sigma(\delta)$	Error $ au$
Unique-dec	oding $\frac{\delta_{\min}}{d+2}$	δ	$\delta n \cdot \frac{d}{ \mathbb{F} }$
List-deco	ding $1 - \sqrt[d+2]{1 - \delta_{\min} + \eta}$	δ	$\delta n \cdot rac{\ell+1}{\eta} \cdot rac{d}{ \mathbb{F} }$

- Implies prior results about distance-preserving generators
- Improves prior results
 - > For $G(x) = (x^i)_{0 \le i < \ell}$, remove from τ the exponential dependence in ℓ from [BKS18]
 - > **Exact** distance preservation (instead of *approximate*)

Application: Proximity gaps for all linear codes

Theorem \implies Proximity gaps for all linear codes

Let $\delta \in (0, \Lambda)$. Let \mathscr{C} be a linear code and let $G \colon \mathbb{F}^s \to \mathbb{F}^\ell$ be a polynomial generator. Exactly one of the following two statements holds:

(1)
$$\Pr\left[\Delta\left(G(\boldsymbol{x})^{\top}\cdot\boldsymbol{U},\mathscr{C}\right)<\delta\right]=1$$
 OR (2) $\Pr\left[\Delta\left(G(\boldsymbol{x})^{\top}\cdot\boldsymbol{U},\mathscr{C}\right)<\delta\right]\leq\tau.$

Previous work on proximity gaps:

- All linear codes uniform coefficients, $\delta < \frac{\delta_{\min}}{3}$ [AHIV17, RZ17]
- ▶ RS codes uniform coefficients & powers, $\delta < 1 \sqrt{1 \delta_{\min}}$ [BCIKS20]

Application: Proximity gaps for all linear codes

Theorem \implies Proximity gaps for all linear codes

Let $\delta \in (0, \Lambda)$. Let \mathscr{C} be a linear code and let $G \colon \mathbb{F}^s \to \mathbb{F}^\ell$ be a polynomial generator. Exactly one of the following two statements holds:

(1)
$$\Pr\left[\Delta\left(G(\boldsymbol{x})^{\top}\cdot\boldsymbol{U},\boldsymbol{\mathscr{C}}\right)<\delta\right]=1$$
 OR (2) $\Pr\left[\Delta\left(G(\boldsymbol{x})^{\top}\cdot\boldsymbol{U},\boldsymbol{\mathscr{C}}\right)<\delta\right]\leq\tau.$

Previous work on proximity gaps:

- All linear codes uniform coefficients, $\delta < \frac{\delta_{\min}}{3}$ [AHIV17, RZ17]
- ▶ RS codes uniform coefficients & powers, $\delta < 1 \sqrt{1 \delta_{\min}}$ [BCIKS20]

In fact, nearly all combinations are at the same distance. If $\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell}) \in (0, \Lambda)$, then $\Pr\left[\Delta(G(\boldsymbol{x})^{\top} \cdot \boldsymbol{U}, \mathscr{C}) \neq \Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathscr{C}^{\ell})\right] \leq \tau$. Technical Overview

Theorem

Any degree-*d* generator $G \colon \mathbb{F}^s \to \mathbb{F}^\ell$ is (Λ, σ, τ) -distance-preserving.

	Proximity range Λ	New distance σ	Error $ au$
Unique-decoding	$rac{\delta_{\min}}{d+2}$	δ	$\delta n \cdot \frac{d}{ \mathbb{F} }$
List-decoding	$1 - \sqrt[d+2]{1-\delta_{\min}+\eta}$	δ	$\delta n \cdot \frac{\ell+1}{\eta} \cdot \frac{d}{ \mathbb{F} }$

Any **univariate** degree-*d* generator $G \colon \mathbb{F} \to \mathbb{F}^{\ell}$ is (Λ, σ, τ) -distance-preserving.

Any **multivariate** degree-*d* generator $G \colon \mathbb{F}^s \to \mathbb{F}^\ell$ is (Λ, σ, τ) -distance-preserving.

Let $\mathcal{L} \subseteq \{\mathbb{F}^s \to \mathbb{F}\}$ be a \mathbb{F} -linear space and let $\{f_1, \ldots, f_\ell\}$ be a basis of \mathcal{L} .

Let $\mathcal{L} \subseteq \{\mathbb{F}^s \to \mathbb{F}\}$ be a \mathbb{F} -linear space and let $\{f_1, \dots, f_\ell\}$ be a basis of \mathcal{L} . Consider the evaluation map ev: $\begin{array}{cc} \mathcal{L} & \to \mathbb{F}^N \\ f & \mapsto (f(\boldsymbol{x}) : \boldsymbol{x} \in \mathbb{F}^s) \end{array}$, where $N := |\mathbb{F}|^s$.

Let $\mathcal{L} \subseteq \{\mathbb{F}^s \to \mathbb{F}\}$ be a \mathbb{F} -linear space and let $\{f_1, \ldots, f_\ell\}$ be a basis of \mathcal{L} . Consider the evaluation map ev: $\begin{array}{cc} \mathcal{L} & \to \mathbb{F}^N \\ f & \mapsto (f(\boldsymbol{x}) : \boldsymbol{x} \in \mathbb{F}^s) \end{array}$, where $N := |\mathbb{F}|^s$. We have:

• $\mathscr{D} = \operatorname{ev}(\mathcal{L})$ is a $[N, \ell]$ -code.

Let $\mathcal{L} \subseteq \{\mathbb{F}^s \to \mathbb{F}\}$ be a \mathbb{F} -linear space and let $\{f_1, \ldots, f_\ell\}$ be a basis of \mathcal{L} . Consider the evaluation map ev: $\begin{array}{cc} \mathcal{L} & \to \mathbb{F}^N \\ f & \mapsto (f(\boldsymbol{x}) : \boldsymbol{x} \in \mathbb{F}^s) \end{array}$, where $N := |\mathbb{F}|^s$. We have:

Example Let $\ell \leq |\mathbb{F}|$. Consider the encoding map ev : $\begin{array}{cc} \mathbb{F}[x]_{<\ell} & \to \mathbb{F}^{|\mathbb{F}|} \\ f & \mapsto (f(x): x \in \mathbb{F}) \end{array}$. • \mathcal{D} is a Reed-Solomon code with parameters $[|\mathbf{F}|, \ell]$. • It has relative distance $\delta_{\min}(\mathscr{D}) = 1 - \frac{\ell - 1}{\mathbb{E}}$. • Let $(f_i)_{i \in [\ell]}$ be a basis of $\mathbb{F}[x]_{<\ell}$. Then $G_{\mathscr{D}}$: $\begin{array}{cc} \mathbb{F} & \to \mathbb{F}^{\ell} \\ x & \mapsto (f_i(x))_{i \in [\ell]} \end{array}$ is $\frac{\ell-1}{\mathbb{F}}$ -biased.

Let $\mathcal{L} \subseteq \{\mathbb{F}^s \to \mathbb{F}\}\$ be a \mathbb{F} -linear space and let $\{f_1, \ldots, f_\ell\}\$ be a basis of \mathcal{L} . Assume that $\mathscr{D} = \operatorname{ev}(\mathcal{L})\$ is **MDS**, meaning $\delta_{\min}(\mathscr{D}) = 1 - \frac{\ell - 1}{N}$. $N := |\mathbb{F}^s|$

Let $\mathcal{L} \subseteq \{\mathbb{F}^s \to \mathbb{F}\}$ be a \mathbb{F} -linear space and let $\{f_1, \dots, f_\ell\}$ be a basis of \mathcal{L} . Assume that $\mathscr{D} = \operatorname{ev}(\mathcal{L})$ is **MDS**, meaning $\delta_{\min}(\mathscr{D}) = 1 - \frac{\ell - 1}{N}$. $N := |\mathbb{F}^s|$ Then $G_{\mathscr{D}} \colon \begin{array}{c} \mathbb{F}^s & \to \mathbb{F}^\ell \\ x & \mapsto (f_i(x))_{i \in [\ell]} \end{array}$ is $\begin{cases} 1. \ \varepsilon \text{-biased for } \varepsilon = \frac{\ell - 1}{N}, \end{cases}$

Let $\mathcal{L} \subseteq \{\mathbb{F}^s \to \mathbb{F}\}$ be a \mathbb{F} -linear space and let $\{f_1, \ldots, f_\ell\}$ be a basis of \mathcal{L} . Assume that $\mathscr{D} = \operatorname{ev}(\mathcal{L})$ is **MDS**, meaning $\delta_{\min}(\mathscr{D}) = 1 - \frac{\ell - 1}{N}$. $N := |\mathbb{F}^s|$ Then $G_{\mathscr{D}} \colon \begin{array}{c} \mathbb{F}^s & \to \mathbb{F}^\ell \\ x & \mapsto (f_i(x))_{i \in [\ell]} \end{array}$ is $\begin{cases} 1. \ \varepsilon \text{-biased for } \varepsilon = \frac{\ell - 1}{N}, \\ 2. \ (\Lambda, \sigma, \tau) \text{-distance-preserving.} \end{cases}$

Let $\mathcal{L} \subseteq \{\mathbb{F}^s \to \mathbb{F}\}$ be a \mathbb{F} -linear space and let $\{f_1, \ldots, f_\ell\}$ be a basis of \mathcal{L} . Assume that $\mathscr{D} = \operatorname{ev}(\mathcal{L})$ is **MDS**, meaning $\delta_{\min}(\mathscr{D}) = 1 - \frac{\ell - 1}{N}$. $N := |\mathbb{F}^s|$ Then $G_{\mathscr{D}}$: $\begin{array}{cc} \mathbb{F}^{s} \to \mathbb{F}^{\ell} \\ x \mapsto (f_{i}(x))_{i \in [\ell]} \end{array}$ is $\begin{cases} 1. \varepsilon \text{-biased for } \varepsilon = \frac{\ell-1}{N}, \\ 2. (\Lambda, \sigma, \tau) \text{-distance-preserving.} \end{cases}$ **Proximity range** Λ New distance $\sigma(\delta)$ Error τ Unique-decoding $\frac{\delta_{\min}}{\ell+1}$ δ $\delta n \cdot \epsilon$ List-decoding $1 - \frac{\ell+1}{\sqrt{1-\delta_{\min}+\eta}}$ δ $\delta n \cdot \frac{\ell+1}{n} \cdot \epsilon$

Unique-decoding regime: $\delta < \frac{\delta_{\min}}{\ell+1}$

Assume $\exists A \subseteq \mathbb{F}^{s}, |A| > \tau \cdot |\mathbb{F}^{s}|$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot U, \mathscr{C}) < \delta.$

Unique-decoding regime: $\delta < \frac{\delta_{\min}}{\ell+1}$

Assume $\exists A \subseteq \mathbb{F}^s$, $|A| > \tau \cdot |\mathbb{F}^s|$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot U, \mathscr{C}) < \delta.$

Step 1. Find $\mathbf{C} \in \mathscr{C}^{\ell}$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot \mathbf{U}, G_{\mathscr{D}}(x) \cdot \mathbf{C}) < \delta$.

Unique-decoding regime: $\delta < \frac{\delta_{\min}}{\ell+1}$

Assume $\exists A \subseteq \mathbb{F}^s$, $|A| > \tau \cdot |\mathbb{F}^s|$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot U, \mathscr{C}) < \delta.$

Step 1. Find $\mathbf{C} \in \mathscr{C}^{\ell}$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot \mathbf{U}, G_{\mathscr{D}}(x) \cdot \mathbf{C}) < \delta$.

For each $x \in A$, consider $c_x \in \mathscr{C}$ that is δ -close to $G_{\mathscr{D}}(x) \cdot U$.

Unique-decoding regime: $\delta < \frac{\delta_{\min}}{\ell+1}$

Assume $\exists A \subseteq \mathbb{F}^s$, $|A| > \tau \cdot |\mathbb{F}^s|$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot U, \mathscr{C}) < \delta.$

Step 1. Find $\mathbf{C} \in \mathscr{C}^{\ell}$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot \mathbf{U}, G_{\mathscr{D}}(x) \cdot \mathbf{C}) < \delta$.

- For each $x \in A$, consider $c_x \in \mathscr{C}$ that is δ -close to $G_{\mathscr{D}}(x) \cdot U$.
- Take ℓ distinct $s_1, \ldots, s_\ell \in A$.

Unique-decoding regime: $\delta < \frac{\delta_{\min}}{\ell+1}$

Assume $\exists A \subseteq \mathbb{F}^s$, $|A| > \tau \cdot |\mathbb{F}^s|$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot U, \mathscr{C}) < \delta.$

Step 1. Find $\mathbf{C} \in \mathscr{C}^{\ell}$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot \mathbf{U}, G_{\mathscr{D}}(x) \cdot \mathbf{C}) < \delta$.

- For each $x \in A$, consider $c_x \in \mathscr{C}$ that is δ -close to $G_{\mathscr{D}}(x) \cdot U$.
- Take ℓ distinct $s_1, \ldots, s_\ell \in A$.
- Since \mathscr{D} is MDS*, compute $\mathbb{C} \in \mathscr{C}^{\ell}$ s.t. $\forall i \in [\ell], c_{s_i} = G_{\mathscr{D}}(s_i) \cdot \mathbb{C}$.

* $[N, \ell]$ -code \mathscr{D} is MDS iff for any $S \subseteq \mathbb{F}^s$, $|S| = \ell$, $\{G_{\mathscr{D}}(s) : s \in S\}$ is linearly independent.

Unique-decoding regime: $\delta < \frac{\delta_{\min}}{\ell+1}$

Assume $\exists A \subseteq \mathbb{F}^s$, $|A| > \tau \cdot |\mathbb{F}^s|$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot U, \mathscr{C}) < \delta.$

Step 1. Find $\mathbf{C} \in \mathscr{C}^{\ell}$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot \mathbf{U}, G_{\mathscr{D}}(x) \cdot \mathbf{C}) < \delta$.

- For each $x \in A$, consider $c_x \in \mathscr{C}$ that is δ -close to $G_{\mathscr{D}}(x) \cdot U$.
- Take ℓ distinct $s_1, \ldots, s_\ell \in A$.
- Since \mathscr{D} is MDS, compute $\mathbb{C} \in \mathscr{C}^{\ell}$ s.t. $\forall i \in [\ell], c_{s_i} = G_{\mathscr{D}}(s_i) \cdot \mathbb{C}$.
- Using $\delta < \frac{\delta_{\min}}{\ell+1}$, prove that $\forall x \in A, c_x = G_{\mathscr{D}}(x) \cdot C$.

Unique-decoding regime: $\delta < \frac{\delta_{\min}}{\ell+1}$

Assume $\exists A \subseteq \mathbb{F}^s$, $|A| > \tau \cdot |\mathbb{F}^s|$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot U, \mathscr{C}) < \delta.$

Step 1. Find $\mathbf{C} \in \mathscr{C}^{\ell}$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot \mathbf{U}, G_{\mathscr{D}}(x) \cdot \mathbf{C}) < \delta$.

- For each $x \in A$, consider $c_x \in \mathscr{C}$ that is δ -close to $G_{\mathscr{D}}(x) \cdot U$.
- Take ℓ distinct $s_1, \ldots, s_\ell \in A$.
- Since \mathscr{D} is MDS, compute $\mathbb{C} \in \mathscr{C}^{\ell}$ s.t. $\forall i \in [\ell], c_{s_i} = G_{\mathscr{D}}(s_i) \cdot \mathbb{C}$.
- Using $\delta < \frac{\delta_{\min}}{\ell+1}$, prove that $\forall x \in A, c_x = G_{\mathscr{D}}(x) \cdot C$.

Step 2. Prove that $\Delta_{\mathbb{F}^{\ell}}(U, \mathbb{C}) < \delta$. (Follows from bias of $G_{\mathcal{D}}$)

Proof of Key Lemma — Unique-decoding regime List-decoding regime

Unique-decoding List-decoding regime: $\delta < 1 - \sqrt[\ell+1]{1 - \delta_{\min}}$

Assume $\exists A \subseteq \mathbb{F}^s$, $|A| > \tau \cdot |\mathbb{F}^s|$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot U, \mathscr{C}) < \delta.$

Step 1. Find $\mathbf{C} \in \mathscr{C}^{\ell}$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot \mathbf{U}, G_{\mathscr{D}}(x) \cdot \mathbf{C}) < \delta$.

- For each $x \in A$, consider $c_x \in \mathscr{C}$ that is δ -close to $G_{\mathscr{D}}(x) \cdot U$.
- Take ℓ distinct $s_1, \ldots, s_\ell \in A$.
- Since \mathscr{D} is MDS, compute $\mathbb{C} \in \mathscr{C}^{\ell}$ s.t. $\forall i \in [\ell], c_{s_i} = G_{\mathscr{D}}(s_i) \cdot \mathbb{C}$.
- Using $\delta < \frac{\delta_{\min}}{\ell+1}$, prove that $\forall x \in A$, $c_x = G_{\mathscr{D}}(x) \cdot C$. \leftarrow FAIL

Step 2. Prove that $\Delta_{\mathbb{F}^{\ell}}(U, \mathbb{C}) < \delta$. (Follows from bias of $G_{\mathscr{D}}$)

Proof of Key Lemma — Unique-decoding regime List-decoding regime

Unique-decoding List-decoding regime: $\delta < 1 - \sqrt[\ell+1]{1 - \delta_{\min}}$

Assume $\exists A \subseteq \mathbb{F}^s$, $|A| > \tau \cdot |\mathbb{F}^s|$ s.t. $\forall x \in A, \Delta(G_{\mathscr{D}}(x) \cdot U, \mathscr{C}) < \delta.$

New Step 1. Find a large subset $B \subseteq A$ and $\mathbf{C} \in \mathscr{C}^{\ell}$ such that $\forall \boldsymbol{x} \in B, \Delta(G_{\mathscr{D}}(\boldsymbol{x}) \cdot \boldsymbol{U}, G_{\mathscr{D}}(\boldsymbol{x}) \cdot \mathbf{C}) < \delta.$

More challenging because codewords are very noisy.

Step 2. Prove that $\Delta_{\mathbb{F}^{\ell}}(\boldsymbol{U}, \mathbf{C}) < \delta$. (Follows from bias of $G_{\mathscr{D}}$)

Generators from MDS codes are distance-preserving.

Any **univariate** degree-*d* generator $G \colon \mathbb{F} \to \mathbb{F}^{\ell}$ is distance-preserving.

↓

 $\diamond \text{ Consider } G_{\mathscr{D}} \colon \mathbb{F} \to \mathbb{F}^{d+1}$ where \mathscr{D} is a RS code of dimension d+1.

Any **univariate** degree-*d* generator $G \colon \mathbb{F} \to \mathbb{F}^{\ell}$ is distance-preserving.

Generators from MDS codes are distance-preserving.

↓

Any **univariate** degree-*d* generator $G \colon \mathbb{F} \to \mathbb{F}^{\ell}$ is distance-preserving.

◇ Consider $G_{\mathscr{D}}$: $\mathbb{F} \to \mathbb{F}^{d+1}$ where \mathscr{D} is a RS code of dimension d + 1.

Any **multivariate** degree-d generator $G \colon \mathbb{F}^s \to \mathbb{F}^\ell$ is distance-preserving. ◊ By induction on the number of variables s.

Conclusion

Summary

Any polynomial generator is distance-preserving.

• Our proof covers all previously known distance-preserving generators, and leads to **improved parameters** and **proximity gaps**.

Conclusion

Summary

Any polynomial generator is distance-preserving.

• Our proof covers all previously known distance-preserving generators, and leads to **improved parameters** and **proximity gaps**.

Future work

- Larger proximity range Λ ? Smaller error probability τ ?
 - > τ is sharp in some settings, e.g. $G(x) = (x^i)_{0 \le i < \ell}$ when $\delta < \delta_{\min}/2$.

Summary

Any polynomial generator is distance-preserving.

• Our proof covers all previously known distance-preserving generators, and leads to **improved parameters** and **proximity gaps**.

Future work

- Larger proximity range Λ ? Smaller error probability τ ?
 - > τ is sharp in some settings, e.g. $G(x) = (x^i)_{0 \le i < \ell}$ when $\delta < \delta_{\min}/2$.
- New distance-preserving generators? (Yes [AGHP92])
- Are all biased generators also distance-preserving generators?

Thanks!