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Linear codes

A linear code C is a linear subspace of Fn.

A code C has relative minimum distance δmin ∈ [0, 1] if
∀c, c′ ∈ C , c ̸= c′ : ∆(c, c′) ≥ δmin.

∆(·, ·) = relative Hamming distance

A vector u ∈ Fn is δ-close to C if
minc∈C ∆(u, c) = ∆(u, C ) < δ.
Otherwise, u is δ-far from C .
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Batch Proximity Testing in Interactive Oracle Proofs

– If x ∈ L, then ∃u1, . . . , uℓ ∈ C satisfying all verifier’s checks.
– If x ̸∈ L, then any (u1, . . . , uℓ) ∈ (Fn)ℓ falsifies verifier’s checks with high

probability, given that the ui’s are all close to C .

P V

u1

u2

...

uℓ

Needed: check proximity of
u1, . . . , uℓ to C .

Proximity tests can be expensive,
e.g. FRI protocol used in STARKs,

Aurora, Ligero, Shockwave, ...
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Testing Proximity to Linear Codes



Proximity test for a single vector

Given: – linear code C ⊆ Fn

– proximity parameter δ

– purported codeword u ∈ Fn

P ’s inputs: C , δ, u.
V ’s inputs: C , δ and oracle access to u.

Proximity test (P ,V)

δ
u

codewords

Completeness. If u ∈ C , verifier V accepts.
Soundness. If ∆(u, C ) ≥ δ, verifier V rejects with high prob.
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Batch proximity test using random linear combinations [RVW13]

Given: – linear code C ⊆ Fn

– proximity parameter δ

– purported codewords u1, . . . , uℓ ∈ Fn (oracles)

1. Vbatch → Pbatch : (z1, . . . , zℓ)
$← Fℓ.

2. Pbatch and Vbatch run (P ,V) to check δ-proximity of ∑ ziui to C .

Batch proximity test (Pbatch,Vbatch)

Key properties:
� If u1, . . . , uℓ ∈ C , then ∑ ziui ∈ C .
� For every δ ∈ (0, 1

2 ), if maxi ∆(ui, C ) ≥ δ, then
Pr

z1,...,zℓ←Fℓ

[
∆
(
∑ ziui, C

)
< 2δ

]
≤ 1
|F| .
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Correlated agreements

Many situations require a stronger guarantee.

If there are many (z1, . . . , zℓ) ∈ Fℓ such that ∑ ziui is close to C ,
it must be because u1, . . . , uℓ ∈ Fn have large correlated agreement with the
code C :

∃T ⊆ [n], ∃c1, . . . , cℓ ∈ C s.t.
{
|T| > (1− δ)n,
∀i ∈ [ℓ], ui T = ci T.

� Example 1. Soundness of IOP system requires oracles u1, . . . , uℓ to be close
to different codes C 1, . . . , C ℓ with different rates.

∠ e.g. Reed-Solomon codes with different degree bounds.
� Example 2. Soundness analysis of IOPs of Proximity for linear codes.

[BBHR18, BKS18, BGKS20, BCIKS20, BCG20, ABN22, BLNR22]
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Correlated agreement = proximity to interleaved code

Vectors u1, . . . , uℓ ∈ Fn have large correlated agreement with C :

∃T ⊆ [n], ∃c1, . . . , cℓ ∈ C s.t.
{
|T| > (1− δ)n,
∀i ∈ [ℓ], ui T = ci T.

Interleaved code

C ℓ :=

C =


−c1−

...
−cℓ−

 ∈ Fℓ×n : ∀i ∈ [ℓ], ci ∈ C



U :=


−u1−

...
−uℓ−

 ∈ Fℓ×n

Correlated agreement ←→ ∆Fℓ(U , C ℓ) < δ
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Maximum distance vs column-wise distance

C ⊆ F9 U :=


−u1−
−u2−
−u3−
−u4−

 ∈ F4×9

Green = correct
Red = error

u1
u2
u3
u4

maxi ∆(ui, C ) =

3/9

∆Fℓ(U , C ℓ) =

4/9

u1
u2
u3
u4

maxi ∆(ui, C ) = 2/9
∆Fℓ(U , C ℓ) = 5/9
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Distance Preservation to Interleaved Codes



Distance preservation with random linear combinations

Distance preservation. There exists Λ s.t. for every δ ∈ (0, Λ),
∆Fℓ(U , C ℓ) ≥ δ =⇒ Pr

z←Fℓ
[∆ (z ·U , C ) < σ(δ)] ≤ τ.

(σ(δ) ≈ δ)

Proximity range Λ New distance σ(δ) Error τ

[AHIV17] δmin
4 δ δn

|F|
}

Unique-decoding
[RZ17] δmin

3 δ δn
|F|

[BKS18] 1− 4
√

1− δmin + η δ− η 2
η3|F|

}
List-decoding

[BGKS20] 1− 3
√

1− δmin + η δ− η 2
η2|F|
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Distance preservation with random linear combinations

Distance preservation. There exists Λ s.t. for every δ ∈ (0, Λ),
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� Λ = 1− 3
√

1− δmin + η is sharp for some codes with linear-size alphabet.

� Better parameters for specific family of codes (Reed-Solomon) [BCIKS20].

11 / 25



Distance preservation with random linear combinations

Distance preservation. There exists Λ s.t. for every δ ∈ (0, Λ),
∆Fℓ(U , C ℓ) ≥ δ =⇒ Pr

z←Fℓ
[∆ (z ·U , C ) < σ(δ)] ≤ τ.

(σ(δ) ≈ δ)

Proximity range Λ New distance σ(δ) Error τ

[AHIV17] δmin
4 δ δn

|F|
}

Unique-decoding
[RZ17] δmin

3 δ δn
|F|

[BKS18] 1− 4
√

1− δmin + η δ− η 2
η3|F|

}
List-decoding

[BGKS20] 1− 3
√

1− δmin + η δ− η 2
η2|F|

� Λ = 1− 3
√

1− δmin + η is sharp for some codes with linear-size alphabet.
� Better parameters for specific family of codes (Reed-Solomon) [BCIKS20].

11 / 25



What about distribution ̸= uniform?

Possible to sample coefficients from distribution ̸= uniform?

Example. For every η ∈ (0, 1) and every 0 < δ < 1− ℓ
√

1− δmin + η,

∆Fℓ(U , C ℓ) ≥ δ
[BKS18]
=⇒ Pr

x←F

[
∆
(
(1, x, x2, . . . , xℓ−1) ·U , C

)
< δ− η

]
≤

(
2
η

)ℓ+1

· ℓ− 1
|F|

Why reduce randomness complexity?

� concrete efficiency of IOPs used in real-world (e.g. FRI, STARKs)
� sometimes necessary, e.g. IOPs with linear-time prover [BCL22, BCGL22]
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(Recall) Goal : Batch proximity testing

We are looking for generators G : Fs → Fℓ that allow randomness-efficient
batch proximity testing.

Given: – linear code C ⊆ Fn

– proximity parameter δ

– purported codewords u1, . . . , uℓ ∈ Fn (oracles)
1. Vbatch → Pbatch : x

$← Fs.
2. Pbatch and Vbatch run (P ,V) to check δ-proximity of ∑ G(x)iui to C .

Batch proximity test (Pbatch,Vbatch)
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Distance-Preserving Generators



Warm-up: Epsilon-biased generators

Parameters: ℓ ≥ s ≥ 1 integers, ε ∈ (0, 1).

A function G : Fs → Fℓ is an ε-biased generator for Fℓ if
∀U ∈ Fℓ×n, U ̸= 0ℓ×n =⇒ Pr

x←Fs
[G(x) ·U = 0n] ≤ ε.

Numerous applications in theoretical computer science (derandomization,
error-correcting codes, probabilistic proofs, ...).

Seed space Generator Bias ε

Fℓ G(x) = x 1
|F|

F G(x) = (1, x, . . . , xℓ−1) ℓ−1
|F|

Fs, 2s = ℓ G(x) = (∏i xbi
i )b∈{0,1}s s

|F|

14 / 25



Warm-up: Epsilon-biased generators

Parameters: ℓ ≥ s ≥ 1 integers, ε ∈ (0, 1).

A function G : Fs → Fℓ is an ε-biased generator for Fℓ if
∀U ∈ Fℓ×n, U ̸= 0ℓ×n =⇒ Pr

x←Fs
[G(x) ·U = 0n] ≤ ε.

Numerous applications in theoretical computer science (derandomization,
error-correcting codes, probabilistic proofs, ...).

Seed space Generator Bias ε

Fℓ G(x) = x 1
|F|

F G(x) = (1, x, . . . , xℓ−1) ℓ−1
|F|

Fs, 2s = ℓ G(x) = (∏i xbi
i )b∈{0,1}s s

|F|

14 / 25



Warm-up: Epsilon-biased generators

Parameters: ℓ ≥ s ≥ 1 integers, ε ∈ (0, 1).

A function G : Fs → Fℓ is an ε-biased generator for Fℓ if
∀U ∈ Fℓ×n, U ̸= 0ℓ×n =⇒ Pr

x←Fs
[G(x) ·U = 0n] ≤ ε.

Numerous applications in theoretical computer science (derandomization,
error-correcting codes, probabilistic proofs, ...).

Seed space Generator Bias ε

Fℓ G(x) = x 1
|F|

F G(x) = (1, x, . . . , xℓ−1) ℓ−1
|F|

Fs, 2s = ℓ G(x) = (∏i xbi
i )b∈{0,1}s s

|F|

14 / 25



Warm-up: Epsilon-biased generators

Parameters: ℓ ≥ s ≥ 1 integers, ε ∈ (0, 1).

A function G : Fs → Fℓ is an ε-biased generator for Fℓ if
∀U ∈ Fℓ×n, U ̸= 0ℓ×n =⇒ Pr

x←Fs
[G(x) ·U = 0n] ≤ ε.

Numerous applications in theoretical computer science (derandomization,
error-correcting codes, probabilistic proofs, ...).

Seed space Generator Bias ε

Fℓ G(x) = x 1
|F|

F G(x) = (1, x, . . . , xℓ−1) ℓ−1
|F|

Fs, 2s = ℓ G(x) = (∏i xbi
i )b∈{0,1}s s

|F|

14 / 25



Warm-up: Epsilon-biased generators

Parameters: ℓ ≥ s ≥ 1 integers, ε ∈ (0, 1).

A function G : Fs → Fℓ is an ε-biased generator for Fℓ if
∀U ∈ Fℓ×n, U ̸= 0ℓ×n =⇒ Pr

x←Fs
[G(x) ·U = 0n] ≤ ε.

Numerous applications in theoretical computer science (derandomization,
error-correcting codes, probabilistic proofs, ...).

Seed space Generator Bias ε

Fℓ G(x) = x 1
|F|

F G(x) = (1, x, . . . , xℓ−1) ℓ−1
|F|

Fs, 2s = ℓ G(x) = (∏i xbi
i )b∈{0,1}s s

|F|

14 / 25



Warm-up: Epsilon-biased generators

Parameters: ℓ ≥ s ≥ 1 integers, ε ∈ (0, 1).

A function G : Fs → Fℓ is an ε-biased generator for Fℓ if
∀U ∈ Fℓ×n, U ̸= 0ℓ×n =⇒ Pr

x←Fs
[G(x) ·U = 0n] ≤ ε.

Numerous applications in theoretical computer science (derandomization,
error-correcting codes, probabilistic proofs, ...).

Seed space Generator Bias ε

Fℓ G(x) = x 1
|F|

F G(x) = (1, x, . . . , xℓ−1) ℓ−1
|F|

Fs, 2s = ℓ G(x) = (∏i xbi
i )b∈{0,1}s s

|F|

14 / 25



Distance-preserving generators

Parameters: Λ ∈ (0, 1), σ : (0, 1)→ (0, 1) non-increasing fct, τ ∈ (0, 1).

A function G : Fs → Fℓ is a (Λ, σ, τ)-distance-preserving generator if
for every code C ⊆ Fn and every δ ∈ (0, Λ):

∀U ∈ Fℓ×n, ∆Fℓ(U , C ℓ) ≥ δ =⇒ Pr
x←Fs

[∆ (G(x) ·U , C ) < σ(δ)] ≤ τ.

Easy fact: G is (Λ, σ, τ)-distance-preserving =⇒ G is τ-biased.
(because G preserves distance to {0n}.)

Question: Do all biased generators preserve distance?
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Polynomial Generators Preserve Distance



Polynomial generators

Let s, ℓ, d be positive integers such that d ≤ |F| and max(s, 2) ≤ ℓ ≤ (s+d
s ).

A function G : Fs → Fℓ is a degree-d generator if there exist ℓ linearly inde-
pendent polynomials P1, . . . , Pℓ ∈ F[X1, . . . , Xs] of total degree at most d such
that ∀x ∈ Fs, G(x) = (Pi(x))1≤i≤ℓ.

Polynomial generator

� Any degree-d generator is ε–biased with ε = d
|F| . (Schwartz-Zippel)

� Distance-preserving generators from literature are special cases of
polynomial generators.
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Main result

Any degree-d generator G : Fs → Fℓ is (Λ, σ, τ)–distance-preserving.
Proximity range Λ New distance σ(δ) Error τ

Unique-decoding δmin
d+2 δ δn · d

|F|
List-decoding 1− d+2

√
1− δmin + η δ δn · ℓ+1

η ·
d
|F|

Theorem

� Implies prior results about distance-preserving generators
� Improves prior results

∠ For G(x) = (xi)0≤i<ℓ, remove from τ the exponential dependence in
ℓ from [BKS18]

∠ Exact distance preservation (instead of approximate)
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Application: Proximity gaps for all linear codes

Let δ ∈ (0, Λ). Let C be a linear code and let G : Fs → Fℓ be a polynomial
generator. Exactly one of the following two statements holds:

(1)Pr
[
∆
(

G(x)⊤ ·U , C
)
< δ

]
= 1 OR (2)Pr

[
∆
(

G(x)⊤ ·U , C
)
< δ

]
≤ τ.

Theorem =⇒ Proximity gaps for all linear codes

Previous work on proximity gaps:
� All linear codes – uniform coefficients, δ < δmin

3 [AHIV17, RZ17]
� RS codes – uniform coefficients & powers, δ < 1−

√
1− δmin [BCIKS20]

In fact, nearly all combinations are at the same distance.
If ∆Fℓ(U , C ℓ) ∈ (0, Λ), then Pr

[
∆(G(x)⊤ ·U , C ) ̸= ∆Fℓ(U , C ℓ)

]
≤ τ.
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Technical Overview



Proof overview

Any univariate degree-d generator G : F→ Fℓ is
(Λ, σ, τ)-distance-preserving.

Any degree-d generator G : Fs → Fℓ is (Λ, σ, τ)-distance-preserving.

Proximity range Λ New distance σ Error τ

Unique-decoding δmin
d+2 δ δn · d

|F|
List-decoding 1− d+2

√
1− δmin + η δ δn · ℓ+1

η ·
d
|F|

Theorem
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Epsilon-biased generators from codes with good distance

Let L ⊆ {Fs → F} be a F-linear space and let { f1, . . . , fℓ} be a basis of L.

Consider the evaluation map ev :
L → FN

f 7→ ( f (x) : x ∈ Fs)
, where N := |F|s.

We have:

� D = ev(L) is a [N, ℓ]-code.

� If δmin(D) ≥ 1− ε, then GD :
Fs → Fℓ

x 7→ ( fi(x))i∈[ℓ]
is ε-biased.

Generators from linear codes
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A small-biased generator from a Reed-Solomon code

Let ℓ ≤ |F|. Consider the encoding map ev :
F[x]<ℓ → F|F|

f 7→ ( f (x) : x ∈ F)
.

� D is a Reed-Solomon code with parameters [|F| , ℓ].
� It has relative distance δmin(D) = 1− ℓ−1

F
.

� Let ( fi)i∈[ℓ] be a basis of F[x]<ℓ.

Then GD :
F → Fℓ

x 7→ ( fi(x))i∈[ℓ]
is ℓ−1

F
-biased.

Example
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Generators from MDS codes preserve distance

Let L ⊆ {Fs → F} be a F-linear space and let { f1, . . . , fℓ} be a basis of L.

Assume that D = ev(L) is MDS, meaning δmin(D) = 1− ℓ−1
N . N := |Fs|

Then GD :
Fs → Fℓ

x 7→ ( fi(x))i∈[ℓ]
is

{
1. ε-biased for ε = ℓ−1

N ,
2. (Λ, σ, τ)-distance-preserving.

Proximity range Λ New distance σ(δ) Error τ

Unique-decoding δmin
ℓ+1 δ δn · ε

List-decoding 1− ℓ+1
√

1− δmin + η δ δn · ℓ+1
η · ε

Key Lemma
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Proof of Key Lemma — Unique-decoding regime

Unique-decoding regime: δ < δmin
ℓ+1

Assume ∃A ⊆ Fs, |A| > τ · |Fs| s.t.
∀x ∈ A, ∆(GD (x) ·U , C ) < δ.

Step 2. Prove that ∆Fℓ(U , C) < δ. (Follows from bias of GD )
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� For each x ∈ A, consider cx ∈ C that is δ-close to GD (x) ·U .
� Take ℓ distinct s1, . . . , sℓ ∈ A.
� Since D is MDS, compute C ∈ C ℓ s.t. ∀i ∈ [ℓ], csi = GD (si) · C.
� Using δ < δmin

ℓ+1 , prove that ∀x ∈ A, cx = GD (x) · C.

Step 2. Prove that ∆Fℓ(U , C) < δ. (Follows from bias of GD )
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Unique-decoding List-decoding regime: δ < 1− ℓ+1
√

1− δmin

Assume ∃A ⊆ Fs, |A| > τ · |Fs| s.t.
∀x ∈ A, ∆(GD (x) ·U , C ) < δ.

Step 1. Find C ∈ C ℓ s.t. ∀x ∈ A, ∆(GD (x) ·U , GD (x) · C) < δ.

� For each x ∈ A, consider cx ∈ C that is δ-close to GD (x) ·U .
� Take ℓ distinct s1, . . . , sℓ ∈ A.
� Since D is MDS, compute C ∈ C ℓ s.t. ∀i ∈ [ℓ], csi = GD (si) · C.
� Using δ < δmin

ℓ+1 , prove that ∀x ∈ A, cx = GD (x) · C. ← FAIL

Step 2. Prove that ∆Fℓ(U , C) < δ. (Follows from bias of GD )
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Proof of Key Lemma — Unique-decoding regime List-decoding regime

Unique-decoding List-decoding regime: δ < 1− ℓ+1
√

1− δmin

Assume ∃A ⊆ Fs, |A| > τ · |Fs| s.t.
∀x ∈ A, ∆(GD (x) ·U , C ) < δ.

New Step 1. Find a large subset B ⊆ A and C ∈ C ℓ such that
∀x ∈ B, ∆(GD (x) ·U , GD (x) · C) < δ.

More challenging because codewords are very noisy.

Step 2. Prove that ∆Fℓ(U , C) < δ. (Follows from bias of GD )
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Proof overview

Generators from MDS codes are
distance-preserving.

Any univariate degree-d generator G : F→ Fℓ

is distance-preserving.

Any multivariate degree-d generator
G : Fs → Fℓ is distance-preserving.

⋄ Consider GD : F→ Fd+1

where D is a RS code of
dimension d + 1.

⋄ GD preserves distance
=⇒ ditto for G : F→ Fℓ

⋄ By induction on the
number of variables s.
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Conclusion

Any polynomial generator is distance-preserving.

� Our proof covers all previously known distance-preserving generators,
and leads to improved parameters and proximity gaps.

Summary

� Larger proximity range Λ? Smaller error probability τ?
∠ τ is sharp in some settings, e.g. G(x) = (xi)0≤i<ℓ when δ < δmin/2.

� New distance-preserving generators? (Yes [AGHP92])
� Are all biased generators also distance-preserving generators?

Future work
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Thanks!
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