
Spartan & Bulletproofs are
simulation-extractable (for free!)

Quang Dao
CMU

Paul Grubbs
Michigan

Lattices Meet Hashes, May 3rd 2023

Applications in blockchains:

• Private smart contracts

• Private transactions

• ZK-Rollups

Other applications:

• Proof of solvency [DBBCB15]

• Image provenance [NT16], [BD22], [KHSS22]

• Content moderation [RMM22], [GAZBW22]

• And many more!

(Zero-knowledge Succinct Non-interactive ARguments of Knowledge)

zkSNARKs: Security & Use Cases

𝖯𝗋𝗈𝗏𝖾𝗋

(x, w) x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π

Short ()≪ |w |

(Fast)*

short, non-interactive proofs

Knowledge Soundness: If accepts, then
 must “know” .

𝖵
𝖯 w

Zero-Knowledge: hides .π w

*For this talk, zkSNARKs may be without fast verification.

Standard ZKP security is not enough
Adaptive attack: choose the statement
adaptively based on the proof

Malleability attack: modify an existing proof
into a new proof without knowing the witness

 We need stronger security properties for deployment⟹

Not ruled out by (non-adaptive) knowledge soundness & zero-knowledge!

*𝖯 𝖵
(x, π)

Accept on π xCompute and
simultaneously

π x

*𝖯 𝖵
(x′ , π′)

Accept on π′ x′ Maul on
to on

π x
π′ x′

Valid (x, π)

Simulation Extractability
Prior works:
• Constructing SIM-EXT zkSNARKs directly.

[GM17], [Lipmaa20]

• Achieving SIM-EXT via generic transformations.
[KZMQCP15], [ARS20], [BS21], [BKSV21]

• Proving certain zkSNARKs are SIM-EXT out-of-
the-box.

• Sonic, Plonk, Marlin [GKKNZ22] not
transparent

• Bulletproofs [GOPTT22] require stronger-
than-necessary assumption (AGM)

⟸

⟸

SIM-EXT (informal): [Sahai99], [DDOPS01]
Knowledge soundness holds even when *
gets extra power.

𝖯

Rules out adaptive & malleability attacks.

Required for many applications. [KMSWP16], [BCG+20]

(x′ , π′)
*𝖯 𝖵

x π If accept on ,
then * knows some

𝖵 π′ x′

𝖯 w′

⋮ ⋮

Proof
Simulation

Oracle

Can we show that transparent zkSNARKs satisfy SIM-EXT

under the same assumptions used to prove (knowledge) soundness?

Our Results
We show that Spartan and Bulletproofs, two transparent zkSNARKs, satisfy SIM-EXT in
the random oracle model (ROM) assuming the discrete log assumption (DLOG) holds.

• Bulletproofs [BBBPWM18] has seen deployment in Monero, MimbleWimble, etc.

• Spartan [Setty20] is a state-of-the-art zkSNARK for prover time.

These assumptions (DLOG + ROM) are the minimal ones used to prove their soundness.

To prove our results, we develop a few tools that might be of independent interest:

• A template for proving SIM-EXT from smaller properties
(building on the work of Ganesh, Khoshakhlagh, Kohlweiss, Nitulescu & Zajac [GKKNZ22])

• A more general tree extraction lemma for proving knowledge soundness
(building on the work of Attema, Fehr & Klooß [AFK22])

1. Breaking SIM-EXT into smaller properties

2. Instantiating SIM-EXT template for Bulletproofs & Spartan

3. Knowledge Soundness via Generalized Tree Builder

Agenda

1. Breaking SIM-EXT into smaller properties

2. Instantiating SIM-EXT template for Bulletproofs & Spartan

3. Knowledge Soundness via Generalized Tree Builder

Agenda

• Construct an interactive, public-coin argument

• Transform it into a non-interactive argument via Fiat-Shamir

The Fiat-Shamir Transform & SIM-EXT Insight

𝖯 𝖵
, x π = (a1, …, an+1)

Accept /
Reject

𝖱𝖮

Derive

c1 = 𝖱𝖮(x, a1)
c2 = 𝖱𝖮(x, a1, a2)

⋮
cn = 𝖱𝖮(x, a1, …, an)

F-S

⋮

𝖯

(x, w) x

a1

c1

a2

an+1

Accept /
Reject

(random)

c2 (random)

𝖵

Insight: [GKKNZ22] Assuming 2 smaller properties, SIM-EXT of F-S
argument may be reduced to its knowledge soundness (KS).

k-Zero-Knowledge and k-Unique Response
Zero-Knowledge (ZK): The simulator Sim
may choose all challenges before
computing ’s messages.𝖯

𝖯 ⋮

x

⋮

c1 1st

cn 1st

a1 2nd

ak 2nd

ak+1 2nd

an+1 2nd

𝖵

x
ck 1st

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth
k-Unique Response (k-UR): * cannot output
accepting proofs that agree up to round
, even given power to choose statement

and challenge .

𝖯
π ≠ π′

k x
kth ck

𝖵

Accept
 on .π, π′ x

*𝖯 ⋮

a1

ak

ak+1

c1

a′ k+1

⋮ ⋮
cn c′ n

an+1 a′ n+1

𝖵𝖯 ⋮

x

⋮

c1 (query)

ck 1st

cn (query)

a1 2nd

ak (k+1)-th

ak+1 (k+1)-th

an+1 (n+2)-th

π π′ ⏟ ⏟
x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth
k-Unique Response (k-UR): * cannot output
accepting proofs that agree up to round
, even given power to choose statement

and challenge .

𝖯
π ≠ π′

k x
kth ck

𝖵

Accept
 on .π, π′ x

*𝖯 ⋮

x

a1

ck

ak

ak+1

c1

a′ k+1

⋮ ⋮
cn c′ n

an+1 a′ n+1

𝖵𝖯 ⋮

x

⋮

c1 (query)

ck 1st

cn (query)

a1 2nd

ak (k+1)-th

ak+1 (k+1)-th

an+1 (n+2)-th

π π′ ⏟ ⏟
x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
FS-Sim may only program the
challenge.

k kth
k-Unique Response (k-UR): * cannot output
accepting proofs that agree up to round
, even given power to choose statement

and program challenge .

𝖯𝖥𝖲
π ≠ π′

k x
kth ck

On statement :
1. Sample random .
2. Simulate , querying for other

challenges for .
3. Reprogram .

x′

c′ k
a′ 1, …, a′ n+1

c′ i = 𝖱𝖮(x′ , a′ 1, …, a′ i) i ≠ k
𝖱𝖮(x′ , a′ 1, …, a′ k) := c′ k

FS-Simk

𝖵,
,

x
π = (a1, …, ak, ak+1, …, an+1)
π′ = (a1, …, ak, a′ k+1, …, a′ n+1)

Accept
 on .π, π′ x

𝖱𝖮

Derive ,
,

c1 = 𝖱𝖮(x, a1)
c2 = 𝖱𝖮(x, a1, a2)

⋮

Program .𝖱𝖮(x, a1, …, ak) := ck

*𝖯𝖥𝖲

Theorem (informal): SIM-EXT = KS + k-ZK + k-UR
(for the same round k)

Reducing SIM-EXT to Knowledge Soundness

SIM-EXT: such that if
and , then .

∃ 𝖤 𝖵(x, π) = 1
(x, π) ∉ Q (x, w) ∈ R

(x, π)
*𝖯 𝖵

Proof
Simulation

Oracle

x1 π1 ⋮ ⋮

…

Extractor

Q = {(x1, π1), …, (xq, πq)}

w

𝖱𝖮

(Adaptive) KS: such that if
, then .

∃ 𝖤
𝖵(x, π) = 1 (x, w) ∈ R

*𝖯 𝖵

…

Extractor w

𝖱𝖮

1. Build a KS prover
from a SIM-EXT
prover.

2. Use k-ZK and k-UR
to remove proof
simulation oracle.

Can reprogram RO!

(x, π)

Proof Sketch: SIM-EXT = KS + k-ZK + k-UR

Sim
Oracle

x1 π1 ⋮ ⋮

Q = {(x1, π1), …, (xq, πq)}

T

*𝖯
[

x, π = (a1, …, an+1)
𝖵

𝖱𝖮

𝖯𝖪𝖲

…

Extractor

w

x, π = (a1, …, an+1)

1. Sample random .
2. Simulate .
3. Reprogram ,

.

c′ 1, …, c′ n
a′ 1, …, a′ n+1

𝖱𝖮(x′ , a′ 1) := c′ 1
…, 𝖱𝖮(x′ , a′ 1, …, an) := c′ n

Strategy for :
• Stores a local table of RO reprogramming.
• Simulate Sim oracle, keeping all programmed queries in .
• Answer queries: via if programmed,

 via ’s own if not.
• Receive and pass on if is not simulated.

𝖯𝖪𝖲

T
T

𝖱𝖮 T
𝖯𝖪𝖲 𝖱𝖮

(x, π) π

Proof Idea:

• If wins whenever * wins,
then we can use to extract .

• Differ when queries on
programmed queries in .

𝖯𝖪𝖲 𝖯
𝖤 w

𝖵 𝖱𝖮
T

Proof Sketch: SIM-EXT = KS + k-ZK + k-UR

Sim
Oracle

x1 π1 ⋮ ⋮

Q = {(x1, π1), …, (xq, πq)}

T

*𝖯
[

x, π = (a1, …, an+1)
𝖵

𝖱𝖮

𝖯𝖪𝖲

…

Extractor

w

x, π = (a1, …, an+1)

1. Sample random .
2. Simulate .
3. Reprogram ,

.

c′ 1, …, c′ n
a′ 1, …, a′ n+1

𝖱𝖮(x′ , a′ 1) := c′ 1
…, 𝖱𝖮(x′ , a′ 1, …, an) := c′ n

Strategy for :
• Stores a local table of RO reprogramming.
• Simulate Sim oracle, keeping all programmed queries in .
• Answer queries: via if programmed,

 via ’s own if not.
• Receive and pass on if is not simulated.

𝖯𝖪𝖲

T
T

𝖱𝖮 T
𝖯𝖪𝖲 𝖱𝖮

(x, π) π

Proof Sketch: SIM-EXT = KS + k-ZK + k-UR

Sim
Oracle

k

x1 π1 ⋮ ⋮

Q = {(x1, π1), …, (xq, πq)}

T

*𝖯
[

x, π = (a1, …, an+1)
𝖵

𝖱𝖮

𝖯𝖪𝖲

…

Extractor

w

x, π = (a1, …, an+1)

1. Sample random .
2. Simulate , querying for

other challenges
 for .

3. Reprogram .

c′ k
a′ 1, …, a′ n+1

c′ i = 𝖱𝖮(x′ , a′ 1, …, a′ i) i ≠ k
𝖱𝖮(x′ , a′ 1, …, a′ k) := c′ k

Strategy for :
• Stores a local table of RO reprogramming.
• Simulate Sim oracle, keeping all programmed queries in .
• Answer queries: via if programmed,

 via ’s own if not.
• Receive and pass on if is not simulated.

𝖯𝖪𝖲

T

k T
𝖱𝖮 T

𝖯𝖪𝖲 𝖱𝖮
(x, π) π

: switch to -ZK simulator Sim .

• via -ZK.

Hyb1 k k

Hyb1 ≈ SIM-EXT k

Proof Sketch: SIM-EXT = KS + k-ZK + k-UR

Sim
Oracle

k

x1 π1 ⋮ ⋮

Q = {(x1, π1), …, (xq, πq)}

T

*𝖯
[

x, π = (a1, …, an+1)
𝖵

𝖱𝖮

𝖯𝖪𝖲

…

Extractor

w

x, π = (a1, …, an+1)

1. Sample random .
2. Simulate , querying for

other challenges
 for .

3. Reprogram .

c′ k
a′ 1, …, a′ n+1

c′ i = 𝖱𝖮(x′ , a′ 1, …, a′ i) i ≠ k
𝖱𝖮(x′ , a′ 1, …, a′ k) := c′ k

Strategy for :
• Stores a local table of RO reprogramming.
• Simulate Sim oracle, keeping all programmed queries in .
• Answer queries: via if programmed,

 via ’s own if not.
• Receive and pass on if bad does not happen.

𝖯𝖪𝖲

T

k T
𝖱𝖮 T

𝖯𝖪𝖲 𝖱𝖮
(x, π)

: switch to -ZK simulator Sim .

• via -ZK.

: abort if bad happens, where
bad = with .

• via -UR and up-to-
bad reasoning.

In , wins whenever * wins.

Hyb1 k k

Hyb1 ≈ SIM-EXT k

Hyb2
∃ (x, π′) ∈ Q π |k = π′ |k

Hyb2 ≈ Hyb1 k

Hyb2 𝖯𝖪𝖲 𝖯

1. SIM-EXT = KS + k-ZK + k-UR (for same k)

2. Instantiating SIM-EXT template for Bulletproofs & Spartan

3. Knowledge Soundness via Generalized Tree Builder

Agenda

Bulletproofs Range Proof

𝖯 𝖵y, z

x

Accept if
IPA accepts and
evaluations are
correct

Recall: We need to show Bulletproofs
satisfy KS, -ZK, and -UR for the same
round .

k k
k

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1

Public Private

Let .a = 𝖡𝗂𝗇𝖣𝖾𝖼𝗈𝗆𝗉(v)

Com(): , Com(): a A s S

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

Bulletproofs Range Proof

Q: Which round to prove -ZK and -UR?k k k

A: Choose the last round with ’s randomness.
(in this case)

𝖯
k = 2

Recall: We need to show Bulletproofs
satisfy KS, -ZK, and -UR for the same
round .

k k
k

𝖯 𝖵y, z

x

Accept if
IPA accepts and
evaluations are
correct

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1

Public Private Com(): , Com(): a A s S

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

Let .a = 𝖡𝗂𝗇𝖣𝖾𝖼𝗈𝗆𝗉(v)

Bulletproofs Range Proof

𝖯 𝖵
Com(): , Com(): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose first.x

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1

Public Private

Let .a = 𝖡𝗂𝗇𝖣𝖾𝖼𝗈𝗆𝗉(v)

Problem: How to simulate IPA?

Idea:

1. Run the honest prover’s algorithm with a
“fake” witness.

2. Resolve contradiction via choosing
and message at the same time.

kth

(k + 1)th

Bulletproofs Range Proof

𝖯 𝖵
Com(): , Com(): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose first.x

1. Pick random challenge .

2. Pick arbitrary witness , random blind .
Compute .

3. Pick random evaluations .
Choose consistent with evaluations.

2nd x

a s
A, S

̂t, βx, μ
T1, T2

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1

Public Private

Let .a = 𝖡𝗂𝗇𝖣𝖾𝖼𝗈𝗆𝗉(v)

(eval check)

g ̂t ⋅ hβx = Vz2 ⋅ gδ(y,z) ⋅ T1
x ⋅ T2

x2

Bulletproofs Range Proof

𝖯 𝖵
Com(): , Com(): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose first.x

1. Pick random challenge .

2. Pick arbitrary witness , random blind .
Compute .

3. Pick random evaluations .
Choose consistent with evaluations.

4. Execute IPA with satisfying witness
(derived from).

2nd x

a s
A, S

̂t, βx, μ
T1, T2

l, r
a, s

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1

Public Private

Let .a = 𝖡𝗂𝗇𝖣𝖾𝖼𝗈𝗆𝗉(v)

Bulletproofs Range Proof

*𝖯 𝖵y, z

Com(“cross terms”): T1, T2

̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct IPA for .̂t = ⟨l, r⟩

⋮

2-UR: * cannot produce two accepting
proofs that agree on
(even if it can choose and).

𝖯
π ≠ π′ A, S, T1, T2

V x

1. Use KS extractor for IPA to extract
from , from .

2. If , we have a non-trivial
DLOG relation * breaks DLOG.

(eval check)

(l, r)
πIPA (l′ , r′) π′ IPA

(̂t, βx) ≠ (̂t′ , β′ x)
⟹ 𝖯

g ̂t ⋅ hβx = V z2 ⋅ gδ(y,z) ⋅ T1
x ⋅ T2

x2 = g ̂t′ ⋅ hβ′ x

̂t′ , β′ x, μ′

IPA for .̂t′ = ⟨l′ , r′ ⟩

⋮

l, r l′ , r′

Let .a = 𝖡𝗂𝗇𝖣𝖾𝖼𝗈𝗆𝗉(v)

Com(): , Com(): a A s S

V

Bulletproofs Range Proof

1. Use KS extractor for IPA to extract
from , from .

2. If , we have a non-trivial
DLOG relation * breaks DLOG.

3. Else if , we also get a non-
trivial DLOG relation * breaks DLOG.

4. Else but *
breaks DLOG.

(l, r)
πIPA (l′ , r′) π′ IPA

(̂t, βx) ≠ (̂t′ , β′ x)
⟹ 𝖯

(l, r, μ) ≠ (l′ , r′ , μ′)
⟹ 𝖯

(l, r) = (l′ , r′) π𝖨𝖯𝖠 ≠ π′ 𝖨𝖯𝖠 ⟹ 𝖯

2-UR: * cannot produce two accepting
proofs that agree on
(even if it can choose and).

𝖯
π ≠ π′ A, S, T1, T2

V x

*𝖯 𝖵y, z

Com(“cross terms”): T1, T2

̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct IPA for .̂t = ⟨l, r⟩

⋮

̂t′ , β′ x, μ′

IPA for .̂t′ = ⟨l′ , r′ ⟩

⋮

l, r l′ , r′

Let .a = 𝖡𝗂𝗇𝖣𝖾𝖼𝗈𝗆𝗉(v)

Com(): , Com(): a A s S

V

Spartan
Relation (R1CS): ,

where .

(A ⋅ Z) ∘ (B ⋅ Z) = C ⋅ Z

Z = (x, w,1)

Com()w
τ

Sumcheck #1

⋮

Product Check

Sumcheck #2

⋮

Open()w

⋮

Equality Check

Accept if all
subprotocols
accept.

PublicA, B, C, x = Privatew =
𝖯 𝖵

Spartan
Relation (R1CS): ,

where .

(A ⋅ Z) ∘ (B ⋅ Z) = C ⋅ Z

Z = (x, w,1)

Com()w
τ

Sumcheck #1

⋮

Product Check

Sumcheck #2

⋮

Open()w

⋮

Equality Check

Accept if all
subprotocols
accept.

PublicA, B, C, x = Privatew =

Q: Which round has the last randomness?k

k = n

𝖯 𝖵

Spartan
Relation (R1CS): ,

where .

(A ⋅ Z) ∘ (B ⋅ Z) = C ⋅ Z

Z = (x, w,1)

-UR: Equality check is a protocol.n Σ

PublicA, B, C, x = Privatew =

Equality Check: C1 = C2 ⋅ hr

A = ht

c

z = c ⋅ r + t

Verify hz ?= (C1/C2)c ⋅ A

 is uniquely
determined given any .
⟹ z

c

Q: Which round has the last randomness?k

Com()w
τ

Sumcheck #1

⋮

Product Check

Sumcheck #2

⋮

Open()w

⋮

Equality Check

Accept if all
subprotocols
accept.

k = n

𝖵*𝖯

Spartan

-ZK: Simulator can only reprogram .n c

PublicA, B, C, x = Privatew =

Problem: How to simulate all prior subprotocols?

Idea:

1. Generate real proofs of subprotocols using a
“fake” witness .

2. Delay contradiction until equality check.

3. Simulate equality check (possible for all statement).

w

Relation (R1CS): ,

where .

(A ⋅ Z) ∘ (B ⋅ Z) = C ⋅ Z

Z = (x, w,1)

Com()w
τ

Sumcheck #1

⋮

Product Check

Sumcheck #2

⋮

Open()w

⋮

Equality Check

Accept if all
subprotocols
accept.

k = n

𝖯 𝖵

1. SIM-EXT = KS + k-ZK + k-UR (for same k)

2. k-ZK and k-UR for Bulletproofs & Spartan

3. Knowledge Soundness via Generalized Tree Builder

Agenda

-Tree of Accepting Transcripts(k1, …, kn)

a1

c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

Special Soundness: There exists
such that a witness can be extracted from
any -tree of accepting transcripts.

k1, …, kn
w

(k1, …, kn)

… … … …

an+1

cn children}kn
✓ ✓

 such that w
(x, w) ∈ R

Tree
Extractor

… … …

*𝖯 𝖵
, x π = (a1, …, an+1)

Accept /
Reject

𝖱𝖮

Derive

c1 = 𝖱𝖮(x, a1)
c2 = 𝖱𝖮(x, a1, a2)

⋮
cn = 𝖱𝖮(x, a1, …, an)

⋮

Knowledge Soundness from Special Soundness
F-S Argument:

Knowledge Soundness from Special Soundness
Attema et al. (TCC ’22): There exists a tree-
builder that builds a -tree
of accepting transcripts in expected time

* .

𝖠𝖥𝖪-𝖳𝖡 (k1, …, kn)

O(Q ⋅ K ⋅ t(𝖯))

Corollary: Special soundness implies
knowledge soundness.

…

Tree
Builder

Combine with 𝖳𝖡 𝖳𝖤

Special Soundness: There exists
such that a witness can be extracted from
any -tree of accepting transcripts.

k1, …, kn
w

(k1, …, kn)

*𝖯 𝖵
, x π = (a1, …, an+1)

Accept /
Reject

𝖱𝖮

Derive

c1 = 𝖱𝖮(x, a1)
c2 = 𝖱𝖮(x, a1, a2)

⋮
cn = 𝖱𝖮(x, a1, …, an)

F-S Argument:

RO queries, (Q = K =
n

∏
i=1

ki)

Generalized Special Soundness & Tree Building

Observation: Spartan and Bulletproofs do
not satisfy special soundness.

However, they satisfy a generalized notion:

• Tree extraction can either output a
witness or a break of some
computational assumption (DLOG).

• The tree of transcripts needs to satisfy
extra predicates on the challenges at
certain levels.

 we construct a generalized tree builder
that can handle partition predicates
⟹

a1

c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

… … … …

an+1

cn children}kn
✓ ✓

 such that w
(x, w) ∈ RTree

Extractor

… … …

Break DLOG
or

Predicate

-Tree of Accepting Transcripts(k1, …, kn)

Generalized Tree Builder for Partition Predicates

Partition Predicate: Let .
Then the challenges from any node

 must belong to different partitions.

• Bulletproofs: for all
(partitions are)

• Spartan: for all
(partitions are lines)

Chi = Chi,1 ⊔ … ⊔ Chi,p
ki ci,1, …, ci,ki

ai

ci,j ≠ ± ci,j′
j ≠ j′ ∈ [1,4]

{x, − x}

(c1, c2) ≠ λ ⋅ (c′ 1, c′ 2) λ ≠ 0
{λ ⋅ x ∣ λ ≠ 0}

 handles distinctness predicate
(for all , or partitions are singletons).
𝖠𝖥𝖪-𝖳𝖡
ci,j ≠ ci,j′

j ≠ j′

a1

c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

… … … …

an+1

cn children}kn
✓ ✓

 such that w
(x, w) ∈ RTree

Extractor

… … …

Break DLOG
or

Predicate

-Tree of Accepting Transcripts(k1, …, kn)

Non-Example:

• Predicates that are “3-local” or more.
(e.g. linear independence between 3
vectors)

≥

Tree Builder for Partition Predicates - Construction
Idea:

1. Provide a wrapper that restricts the challenge
space, by picking a random representative for
each partition .

2. Invoke on the restricted challenge space.

Chi = Chi,1 ⊔ … ⊔ Chi,pi

𝖠𝖥𝖪-𝖳𝖡
…

*𝖯 𝖵
, x π = (a1, …, an+1)

𝖱𝖮

Pick random
representatives

…

𝖠𝖥𝖪-𝖳𝖡

Chi

Chi,1

Chi,2

Chi,pi

…

…

ci,1

ci,2

ci,pi

…

*𝖯

Since guarantees
distinctness, the resulting
challenges belong to
different partitions.

𝖠𝖥𝖪-𝖳𝖡

𝖠𝖥𝖪-𝖳𝖡

Knowledge Soundness - Proof for Spartan
Proof Strategy:

1. Use partition-predicate tree builder to extract
underlying polynomials from Spartan .
(one such polynomial is witness)

2. Conditioned on success (no DLOG break), get
* for Sp-Core .

3. Define bad = accepted in Sp-Core ,
yet not a valid witness.

4. Bound bad by the state-restoration
soundness of Sp-Core.

𝖥𝖲
w

𝖯 𝖥𝖲

(x, π′) 𝖥𝖲
w

Pr[]

*𝖯

, x π = (a1, …, an+1) Spartan𝖥𝖲

 RO queriesq

*𝖯

, x π′ = (p1, …, pn′ +1) Sp-Core𝖥𝖲

 RO queriesq′

𝖯𝖯-𝖳𝖤

State-restoration soundness

*𝖯 p1

pn′ +1

 SR queriesq′

Sp-Core

Choose x

⋮Partial
transcript

queries

Summary
We show that Bulletproofs and Spartan satisfies SIM-EXT, a strong security notion for
zkSNARKs that rules out most attacks in practice.

Limitation: bounds for knowledge soundness are non-tight due to rewinding

Open Questions:

• SIM-EXT for other classes of protocols:

• Lattice-based / Hash-based

• Post-quantum analysis in the QROM

• Recursive SNARKs

• Tighter rewinding bounds

• UC security Thank You!

Concrete: .|𝔽| ≈ 2256, n = 64, t(𝒫*) = 248, Q = 240

Problem:
for expected time .

Adv𝖣𝖫
𝔾 (A) ≤ t(A)2/|𝔽|

A

