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Applications in blockchains: 

• Private smart contracts 

• Private transactions 

• ZK-Rollups 

Other applications: 

• Proof of solvency [DBBCB15] 

• Image provenance [NT16], [BD22], [KHSS22] 

• Content moderation [RMM22], [GAZBW22] 

• And many more!

(Zero-knowledge Succinct Non-interactive ARguments of Knowledge)

zkSNARKs: Security & Use Cases

𝖯𝗋𝗈𝗏𝖾𝗋

(x, w) x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π

Short ( )≪ |w |

(Fast)*

short, non-interactive proofs

Knowledge Soundness: If  accepts, then 
 must “know” .

𝖵
𝖯 w

Zero-Knowledge:  hides .π w

*For this talk, zkSNARKs may be without fast verification.



Standard ZKP security is not enough
Adaptive attack: choose the statement 
adaptively based on the proof

Malleability attack: modify an existing proof 
into a new proof without knowing the witness

 We need stronger security properties for deployment⟹

Not ruled out by (non-adaptive) knowledge soundness & zero-knowledge!

*𝖯 𝖵
(x, π)

Accept  on π xCompute  and  
simultaneously

π x

*𝖯 𝖵
(x′ , π′ )

Accept  on π′ x′ Maul  on  
to  on 

π x
π′ x′ 

Valid (x, π)



Simulation Extractability
Prior works: 
• Constructing SIM-EXT zkSNARKs directly. 

[GM17], [Lipmaa20] 

• Achieving SIM-EXT via generic transformations. 
[KZMQCP15], [ARS20], [BS21], [BKSV21]  

• Proving certain zkSNARKs are SIM-EXT out-of-
the-box.  

• Sonic, Plonk, Marlin [GKKNZ22]  not 
transparent 

• Bulletproofs [GOPTT22]  require stronger-
than-necessary assumption (AGM)

⟸

⟸

SIM-EXT (informal): [Sahai99], [DDOPS01] 
Knowledge soundness holds even when * 
gets extra power.

𝖯

Rules out adaptive & malleability attacks. 

Required for many applications. [KMSWP16], [BCG+20]

(x′ , π′ )
*𝖯 𝖵

x π If  accept  on ,  
then * knows some 

𝖵 π′ x′ 

𝖯 w′ 

⋮ ⋮

Proof 
Simulation 

Oracle

Can we show that transparent zkSNARKs satisfy SIM-EXT 

under the same assumptions used to prove (knowledge) soundness?



Our Results
We show that Spartan and Bulletproofs, two transparent zkSNARKs, satisfy SIM-EXT in 
the random oracle model (ROM) assuming the discrete log assumption (DLOG) holds. 

• Bulletproofs [BBBPWM18] has seen deployment in Monero, MimbleWimble, etc. 

• Spartan [Setty20] is a state-of-the-art zkSNARK for prover time. 

These assumptions (DLOG + ROM) are the minimal ones used to prove their soundness. 

To prove our results, we develop a few tools that might be of independent interest: 

• A template for proving SIM-EXT from smaller properties 
(building on the work of Ganesh, Khoshakhlagh, Kohlweiss, Nitulescu & Zajac [GKKNZ22]) 

• A more general tree extraction lemma for proving knowledge soundness 
(building on the work of Attema, Fehr & Klooß [AFK22])



1. Breaking SIM-EXT into smaller properties 

2. Instantiating SIM-EXT template for Bulletproofs & Spartan 

3. Knowledge Soundness via Generalized Tree Builder

Agenda
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• Construct an interactive, public-coin argument 

• Transform it into a non-interactive argument via Fiat-Shamir

The Fiat-Shamir Transform & SIM-EXT Insight

𝖯 𝖵
, x π = (a1, …, an+1)

Accept / 
Reject

𝖱𝖮

Derive 
 

 
 

c1 = 𝖱𝖮(x, a1)
c2 = 𝖱𝖮(x, a1, a2)

⋮
cn = 𝖱𝖮(x, a1, …, an)

F-S

⋮

𝖯

(x, w) x

a1

c1

a2

an+1

Accept / 
Reject

(random)

c2 (random)

𝖵

Insight: [GKKNZ22] Assuming 2 smaller properties, SIM-EXT of F-S 
argument may be reduced to its knowledge soundness (KS).



k-Zero-Knowledge and k-Unique Response
Zero-Knowledge (ZK): The simulator Sim 
may choose all challenges before 
computing ’s messages.𝖯

𝖯 ⋮

x

⋮

c1 1st

cn 1st

a1 2nd

ak 2nd

ak+1 2nd

an+1 2nd

𝖵

x
ck 1st



k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator 
Sim  may only choose  challenge, and 
compute other messages in order.

k kth
k-Unique Response (k-UR): * cannot output 
accepting proofs  that agree up to round 
, even given power to choose statement  

and  challenge .

𝖯
π ≠ π′ 

k x
kth ck

𝖵

Accept 
 on .π, π′ x

*𝖯 ⋮

a1

ak

ak+1

c1

a′ k+1

⋮ ⋮
cn c′ n

an+1 a′ n+1

𝖵𝖯 ⋮

x

⋮

c1 (query)

ck 1st

cn (query)

a1 2nd

ak (k+1)-th

ak+1 (k+1)-th

an+1 (n+2)-th

π π′ ⏟ ⏟
x



k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator 
Sim  may only choose  challenge, and 
compute other messages in order.

k kth
k-Unique Response (k-UR): * cannot output 
accepting proofs  that agree up to round 
, even given power to choose statement  

and  challenge .

𝖯
π ≠ π′ 

k x
kth ck

𝖵

Accept 
 on .π, π′ x

*𝖯 ⋮

x

a1

ck

ak

ak+1

c1

a′ k+1

⋮ ⋮
cn c′ n

an+1 a′ n+1

𝖵𝖯 ⋮

x

⋮

c1 (query)

ck 1st

cn (query)

a1 2nd

ak (k+1)-th

ak+1 (k+1)-th

an+1 (n+2)-th

π π′ ⏟ ⏟
x



k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator 
FS-Sim  may only program the  
challenge.

k kth
k-Unique Response (k-UR): * cannot output 
accepting proofs  that agree up to round 
, even given power to choose statement  

and program  challenge .

𝖯𝖥𝖲
π ≠ π′ 

k x
kth ck

On statement : 
1. Sample random . 
2. Simulate , querying for other 

challenges  for . 
3. Reprogram .

x′ 

c′ k
a′ 1, …, a′ n+1

c′ i = 𝖱𝖮(x′ , a′ 1, …, a′ i) i ≠ k
𝖱𝖮(x′ , a′ 1, …, a′ k) := c′ k

FS-Simk

𝖵, 
, 

x
π = (a1, …, ak, ak+1, …, an+1)
π′ = (a1, …, ak, a′ k+1, …, a′ n+1)

Accept 
 on .π, π′ x

𝖱𝖮

Derive , 
, 

c1 = 𝖱𝖮(x, a1)
c2 = 𝖱𝖮(x, a1, a2)

⋮

Program .𝖱𝖮(x, a1, …, ak) := ck

*𝖯𝖥𝖲

Theorem (informal): SIM-EXT = KS + k-ZK + k-UR 
(for the same round k)



Reducing SIM-EXT to Knowledge Soundness

SIM-EXT:   such that if  
and , then .

∃ 𝖤 𝖵(x, π) = 1
(x, π) ∉ Q (x, w) ∈ R

(x, π)
*𝖯 𝖵

Proof 
Simulation 

Oracle

x1 π1 ⋮ ⋮

…

Extractor

Q = {(x1, π1), …, (xq, πq)}

w

𝖱𝖮

(Adaptive) KS:   such that if 
, then .

∃ 𝖤
𝖵(x, π) = 1 (x, w) ∈ R

*𝖯 𝖵

…

Extractor w

𝖱𝖮

1. Build a KS prover 
from a SIM-EXT 
prover. 

2. Use k-ZK and k-UR 
to remove proof 
simulation oracle.

Can reprogram RO!

(x, π)



Proof Sketch: SIM-EXT = KS + k-ZK + k-UR

Sim 
Oracle

x1 π1 ⋮ ⋮

Q = {(x1, π1), …, (xq, πq)}

T

*𝖯
[

x, π = (a1, …, an+1)
𝖵

𝖱𝖮

𝖯𝖪𝖲

…

Extractor

w

x, π = (a1, …, an+1)

1. Sample random . 
2. Simulate . 
3. Reprogram , 

.

c′ 1, …, c′ n
a′ 1, …, a′ n+1

𝖱𝖮(x′ , a′ 1) := c′ 1
…, 𝖱𝖮(x′ , a′ 1, …, an) := c′ n

Strategy for : 
• Stores a local table  of RO reprogramming. 
• Simulate Sim oracle, keeping all programmed queries in . 
• Answer  queries: via  if programmed, 

                                 via ’s own  if not. 
• Receive  and pass on if  is not simulated.

𝖯𝖪𝖲

T
T

𝖱𝖮 T
𝖯𝖪𝖲 𝖱𝖮

(x, π) π

Proof Idea: 

• If  wins whenever * wins, 
then we can use  to extract . 

• Differ when  queries  on 
programmed queries in .

𝖯𝖪𝖲 𝖯
𝖤 w

𝖵 𝖱𝖮
T



Proof Sketch: SIM-EXT = KS + k-ZK + k-UR

Sim 
Oracle

x1 π1 ⋮ ⋮

Q = {(x1, π1), …, (xq, πq)}

T

*𝖯
[

x, π = (a1, …, an+1)
𝖵

𝖱𝖮

𝖯𝖪𝖲

…

Extractor

w

x, π = (a1, …, an+1)

1. Sample random . 
2. Simulate . 
3. Reprogram , 

.

c′ 1, …, c′ n
a′ 1, …, a′ n+1

𝖱𝖮(x′ , a′ 1) := c′ 1
…, 𝖱𝖮(x′ , a′ 1, …, an) := c′ n

Strategy for : 
• Stores a local table  of RO reprogramming. 
• Simulate Sim oracle, keeping all programmed queries in . 
• Answer  queries: via  if programmed, 

                                 via ’s own  if not. 
• Receive  and pass on if  is not simulated.

𝖯𝖪𝖲

T
T

𝖱𝖮 T
𝖯𝖪𝖲 𝖱𝖮

(x, π) π



Proof Sketch: SIM-EXT = KS + k-ZK + k-UR

Sim  
Oracle

k

x1 π1 ⋮ ⋮

Q = {(x1, π1), …, (xq, πq)}

T

*𝖯
[

x, π = (a1, …, an+1)
𝖵

𝖱𝖮

𝖯𝖪𝖲

…

Extractor

w

x, π = (a1, …, an+1)

1. Sample random . 
2. Simulate , querying for 

other challenges 
 for . 

3. Reprogram .

c′ k
a′ 1, …, a′ n+1

c′ i = 𝖱𝖮(x′ , a′ 1, …, a′ i) i ≠ k
𝖱𝖮(x′ , a′ 1, …, a′ k) := c′ k

Strategy for : 
• Stores a local table  of RO reprogramming. 
• Simulate Sim  oracle, keeping all programmed queries in . 
• Answer  queries: via  if programmed, 

                                 via ’s own  if not. 
• Receive  and pass on if  is not simulated.

𝖯𝖪𝖲

T

k T
𝖱𝖮 T

𝖯𝖪𝖲 𝖱𝖮
(x, π) π

: switch to -ZK simulator Sim . 

•  via -ZK.

Hyb1 k k

Hyb1 ≈ SIM-EXT k



Proof Sketch: SIM-EXT = KS + k-ZK + k-UR

Sim  
Oracle

k

x1 π1 ⋮ ⋮

Q = {(x1, π1), …, (xq, πq)}

T

*𝖯
[

x, π = (a1, …, an+1)
𝖵

𝖱𝖮

𝖯𝖪𝖲

…

Extractor

w

x, π = (a1, …, an+1)

1. Sample random . 
2. Simulate , querying for 

other challenges 
 for . 

3. Reprogram .

c′ k
a′ 1, …, a′ n+1

c′ i = 𝖱𝖮(x′ , a′ 1, …, a′ i) i ≠ k
𝖱𝖮(x′ , a′ 1, …, a′ k) := c′ k

Strategy for : 
• Stores a local table  of RO reprogramming. 
• Simulate Sim  oracle, keeping all programmed queries in . 
• Answer  queries: via  if programmed, 

                                 via ’s own  if not. 
• Receive  and pass on if bad does not happen.

𝖯𝖪𝖲

T

k T
𝖱𝖮 T

𝖯𝖪𝖲 𝖱𝖮
(x, π)

: switch to -ZK simulator Sim . 

•  via -ZK. 

: abort if bad happens, where 
bad =   with . 

•  via -UR and up-to-
bad reasoning. 

In ,  wins whenever * wins.

Hyb1 k k

Hyb1 ≈ SIM-EXT k

Hyb2
∃ (x, π′ ) ∈ Q π |k = π′ |k

Hyb2 ≈ Hyb1 k

Hyb2 𝖯𝖪𝖲 𝖯



1. SIM-EXT = KS + k-ZK + k-UR (for same k) 

2. Instantiating SIM-EXT template for Bulletproofs & Spartan 

3. Knowledge Soundness via Generalized Tree Builder

Agenda



Bulletproofs Range Proof

𝖯 𝖵y, z

x

Accept if  
IPA accepts and 
evaluations are 
correct 

Recall: We need to show Bulletproofs 
satisfy KS, -ZK, and -UR for the same 
round .

k k
k

Relation:  and V = gvhr 0 ≤ v ≤ 2n − 1

Public Private

Let .a = 𝖡𝗂𝗇𝖣𝖾𝖼𝗈𝗆𝗉(v)

Com( ): , Com( ): a A s S

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

Inner Product Argument (IPA) 
for .̂t = ⟨l, r⟩

⋮



Bulletproofs Range Proof

Q: Which round  to prove -ZK and -UR?k k k

A: Choose the last round with ’s randomness. 
(  in this case)

𝖯
k = 2

Recall: We need to show Bulletproofs 
satisfy KS, -ZK, and -UR for the same 
round .

k k
k

𝖯 𝖵y, z

x

Accept if  
IPA accepts and 
evaluations are 
correct 

Relation:  and V = gvhr 0 ≤ v ≤ 2n − 1

Public Private Com( ): , Com( ): a A s S

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

Inner Product Argument (IPA) 
for .̂t = ⟨l, r⟩

⋮

Let .a = 𝖡𝗂𝗇𝖣𝖾𝖼𝗈𝗆𝗉(v)



Bulletproofs Range Proof

𝖯 𝖵
Com( ): , Com( ): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if  
IPA accepts and 
evaluations are 
correct 

Inner Product Argument (IPA) 
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose  first.x

Relation:  and V = gvhr 0 ≤ v ≤ 2n − 1

Public Private

Let .a = 𝖡𝗂𝗇𝖣𝖾𝖼𝗈𝗆𝗉(v)

Problem: How to simulate IPA?

Idea: 

1. Run the honest prover’s algorithm with a 
“fake” witness. 

2. Resolve contradiction via choosing  
and  message at the same time.

kth

(k + 1)th



Bulletproofs Range Proof

𝖯 𝖵
Com( ): , Com( ): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if  
IPA accepts and 
evaluations are 
correct 

Inner Product Argument (IPA) 
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose  first.x

1. Pick random  challenge . 

2. Pick arbitrary witness , random blind . 
Compute . 

3. Pick random evaluations . 
Choose  consistent with evaluations.

2nd x

a s
A, S

̂t, βx, μ
T1, T2

Relation:  and V = gvhr 0 ≤ v ≤ 2n − 1

Public Private

Let .a = 𝖡𝗂𝗇𝖣𝖾𝖼𝗈𝗆𝗉(v)

 
(eval check)

g ̂t ⋅ hβx = Vz2 ⋅ gδ(y,z) ⋅ T1
x ⋅ T2

x2



Bulletproofs Range Proof

𝖯 𝖵
Com( ): , Com( ): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if  
IPA accepts and 
evaluations are 
correct 

Inner Product Argument (IPA) 
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose  first.x

1. Pick random  challenge . 

2. Pick arbitrary witness , random blind . 
Compute . 

3. Pick random evaluations . 
Choose  consistent with evaluations. 

4. Execute IPA with satisfying witness  
(derived from ).

2nd x

a s
A, S

̂t, βx, μ
T1, T2

l, r
a, s

Relation:  and V = gvhr 0 ≤ v ≤ 2n − 1

Public Private

Let .a = 𝖡𝗂𝗇𝖣𝖾𝖼𝗈𝗆𝗉(v)



Bulletproofs Range Proof

*𝖯 𝖵y, z

Com(“cross terms”): T1, T2

̂t, βx, μ

x

Accept if  
IPA accepts and 
evaluations are 
correct IPA for .̂t = ⟨l, r⟩

⋮

2-UR: * cannot produce two accepting 
proofs  that agree on  
(even if it can choose  and ).

𝖯
π ≠ π′ A, S, T1, T2

V x

1. Use KS extractor for IPA to extract  
from ,  from . 

2. If , we have a non-trivial 
DLOG relation  * breaks DLOG. 

    
(eval check)

(l, r)
πIPA (l′ , r′ ) π′ IPA

( ̂t, βx) ≠ ( ̂t′ , β′ x)
⟹ 𝖯

g ̂t ⋅ hβx = V z2 ⋅ gδ(y,z) ⋅ T1
x ⋅ T2

x2 = g ̂t′ ⋅ hβ′ x

̂t′ , β′ x, μ′ 

IPA for .̂t′ = ⟨l′ , r′ ⟩

⋮

l, r l′ , r′ 

Let .a = 𝖡𝗂𝗇𝖣𝖾𝖼𝗈𝗆𝗉(v)

Com( ): , Com( ): a A s S

V



Bulletproofs Range Proof

1. Use KS extractor for IPA to extract  
from ,  from . 

2. If , we have a non-trivial 
DLOG relation  * breaks DLOG. 

3. Else if , we also get a non-
trivial DLOG relation  * breaks DLOG. 

4. Else  but   * 
breaks DLOG.

(l, r)
πIPA (l′ , r′ ) π′ IPA

( ̂t, βx) ≠ ( ̂t′ , β′ x)
⟹ 𝖯

(l, r, μ) ≠ (l′ , r′ , μ′ )
⟹ 𝖯

(l, r) = (l′ , r′ ) π𝖨𝖯𝖠 ≠ π′ 𝖨𝖯𝖠 ⟹ 𝖯

2-UR: * cannot produce two accepting 
proofs  that agree on  
(even if it can choose  and ).

𝖯
π ≠ π′ A, S, T1, T2

V x

*𝖯 𝖵y, z

Com(“cross terms”): T1, T2

̂t, βx, μ

x

Accept if  
IPA accepts and 
evaluations are 
correct IPA for .̂t = ⟨l, r⟩

⋮

̂t′ , β′ x, μ′ 

IPA for .̂t′ = ⟨l′ , r′ ⟩

⋮

l, r l′ , r′ 

Let .a = 𝖡𝗂𝗇𝖣𝖾𝖼𝗈𝗆𝗉(v)

Com( ): , Com( ): a A s S

V



Spartan
Relation (R1CS): , 

where .

(A ⋅ Z) ∘ (B ⋅ Z) = C ⋅ Z

Z = (x, w,1)

Com( )w
τ

Sumcheck #1

⋮

Product Check

Sumcheck #2

⋮

Open( )w

⋮

Equality Check

Accept if all 
subprotocols 
accept. 

PublicA, B, C, x = Privatew =
𝖯 𝖵



Spartan
Relation (R1CS): , 

where .

(A ⋅ Z) ∘ (B ⋅ Z) = C ⋅ Z

Z = (x, w,1)

Com( )w
τ

Sumcheck #1

⋮

Product Check

Sumcheck #2

⋮

Open( )w

⋮

Equality Check

Accept if all 
subprotocols 
accept. 

PublicA, B, C, x = Privatew =

Q: Which round  has the last randomness?k

k = n

𝖯 𝖵



Spartan
Relation (R1CS): , 

where .

(A ⋅ Z) ∘ (B ⋅ Z) = C ⋅ Z

Z = (x, w,1)

-UR: Equality check is a  protocol.n Σ

PublicA, B, C, x = Privatew =

Equality Check: C1 = C2 ⋅ hr

A = ht

c

z = c ⋅ r + t

Verify hz ?= (C1/C2)c ⋅ A

  is uniquely 
determined given any .
⟹ z

c

Q: Which round  has the last randomness?k

Com( )w
τ

Sumcheck #1

⋮

Product Check

Sumcheck #2

⋮

Open( )w

⋮

Equality Check

Accept if all 
subprotocols 
accept. 

k = n

𝖵*𝖯



Spartan

-ZK: Simulator can only reprogram .n c

PublicA, B, C, x = Privatew =

Problem: How to simulate all prior subprotocols?

Idea:  

1. Generate real proofs of subprotocols using a 
“fake” witness . 

2. Delay contradiction until equality check. 

3. Simulate equality check (possible for all statement).

w

Relation (R1CS): , 

where .

(A ⋅ Z) ∘ (B ⋅ Z) = C ⋅ Z

Z = (x, w,1)

Com( )w
τ

Sumcheck #1

⋮

Product Check

Sumcheck #2

⋮

Open( )w

⋮

Equality Check

Accept if all 
subprotocols 
accept. 

k = n

𝖯 𝖵



1. SIM-EXT = KS + k-ZK + k-UR (for same k) 

2. k-ZK and k-UR for Bulletproofs & Spartan 

3. Knowledge Soundness via Generalized Tree Builder

Agenda



-Tree of Accepting Transcripts(k1, …, kn)

a1

c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

Special Soundness: There exists  
such that a witness  can be extracted from 
any -tree of accepting transcripts.

k1, …, kn
w

(k1, …, kn)

… … … …

an+1

cn  children}kn
✓ ✓

 such that w
(x, w) ∈ R

Tree 
Extractor

… … …

*𝖯 𝖵
, x π = (a1, …, an+1)

Accept / 
Reject

𝖱𝖮

Derive 
 

 
 

c1 = 𝖱𝖮(x, a1)
c2 = 𝖱𝖮(x, a1, a2)

⋮
cn = 𝖱𝖮(x, a1, …, an)

⋮

Knowledge Soundness from Special Soundness
F-S Argument:



Knowledge Soundness from Special Soundness
Attema et al. (TCC ’22): There exists a tree-
builder  that builds a -tree 
of accepting transcripts in expected time 

* .

𝖠𝖥𝖪-𝖳𝖡 (k1, …, kn)

O(Q ⋅ K ⋅ t(𝖯 ))

Corollary: Special soundness implies 
knowledge soundness.

…

Tree 
Builder

Combine  with 𝖳𝖡 𝖳𝖤

Special Soundness: There exists  
such that a witness  can be extracted from 
any -tree of accepting transcripts.

k1, …, kn
w

(k1, …, kn)

*𝖯 𝖵
, x π = (a1, …, an+1)

Accept / 
Reject

𝖱𝖮

Derive 
 

 
 

c1 = 𝖱𝖮(x, a1)
c2 = 𝖱𝖮(x, a1, a2)

⋮
cn = 𝖱𝖮(x, a1, …, an)

F-S Argument:

# RO queries, (Q = K =
n

∏
i=1

ki)



Generalized Special Soundness & Tree Building

Observation: Spartan and Bulletproofs do 
not satisfy special soundness. 

However, they satisfy a generalized notion: 

• Tree extraction can either output a 
witness or a break of some 
computational assumption (DLOG). 

• The tree of transcripts needs to satisfy 
extra predicates on the challenges at 
certain levels.

 we construct a generalized tree builder 
that can handle partition predicates
⟹

a1

c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

… … … …

an+1

cn  children}kn
✓ ✓

 such that w
(x, w) ∈ RTree 

Extractor

… … …

Break DLOG
or

Predicate

-Tree of Accepting Transcripts(k1, …, kn)



Generalized Tree Builder for Partition Predicates

Partition Predicate: Let . 
Then the  challenges  from any node 

 must belong to different partitions. 

• Bulletproofs:  for all  
(partitions are )  

• Spartan:  for all  
(partitions are lines )

Chi = Chi,1 ⊔ … ⊔ Chi,p
ki ci,1, …, ci,ki

ai

ci,j ≠ ± ci,j′ 
j ≠ j′ ∈ [1,4]

{x, − x}

(c1, c2) ≠ λ ⋅ (c′ 1, c′ 2) λ ≠ 0
{λ ⋅ x ∣ λ ≠ 0}

 handles distinctness predicate 
(  for all , or partitions are singletons).
𝖠𝖥𝖪-𝖳𝖡
ci,j ≠ ci,j′ 

j ≠ j′ 

a1

c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

… … … …

an+1

cn  children}kn
✓ ✓

 such that w
(x, w) ∈ RTree 

Extractor

… … …

Break DLOG
or

Predicate

-Tree of Accepting Transcripts(k1, …, kn)

Non-Example: 

• Predicates that are “3-local” or more. 
(e.g. linear independence between  3 
vectors)

≥



Tree Builder for Partition Predicates - Construction
Idea: 

1. Provide a wrapper that restricts the challenge 
space, by picking a random representative for 
each partition . 

2. Invoke  on the restricted challenge space.

Chi = Chi,1 ⊔ … ⊔ Chi,pi

𝖠𝖥𝖪-𝖳𝖡
…

*𝖯 𝖵
, x π = (a1, …, an+1)

𝖱𝖮

Pick random 
representatives

…

𝖠𝖥𝖪-𝖳𝖡

Chi

Chi,1

Chi,2

Chi,pi

…

…

ci,1

ci,2

ci,pi

…

*𝖯

Since  guarantees 
distinctness, the resulting 
challenges belong to 
different partitions.

𝖠𝖥𝖪-𝖳𝖡

𝖠𝖥𝖪-𝖳𝖡



Knowledge Soundness - Proof for Spartan
Proof Strategy: 

1. Use partition-predicate tree builder to extract 
underlying polynomials from Spartan . 
(one such polynomial is witness ) 

2. Conditioned on success (no DLOG break), get 
* for Sp-Core . 

3. Define bad =  accepted in Sp-Core , 
yet  not a valid witness. 

4. Bound bad  by the state-restoration 
soundness of Sp-Core.

𝖥𝖲
w

𝖯 𝖥𝖲

(x, π′ ) 𝖥𝖲
w

Pr[ ]

*𝖯

, x π = (a1, …, an+1) Spartan𝖥𝖲

 RO queriesq

*𝖯

, x π′ = (p1, …, pn′ +1) Sp-Core𝖥𝖲

 RO queriesq′ 

𝖯𝖯-𝖳𝖤

State-restoration soundness

*𝖯 p1

pn′ +1

 SR queriesq′ 

Sp-Core

Choose x

⋮Partial 
transcript 

queries



Summary
We show that Bulletproofs and Spartan satisfies SIM-EXT, a strong security notion for 
zkSNARKs that rules out most attacks in practice. 

Limitation: bounds for knowledge soundness are non-tight due to rewinding 

Open Questions: 

• SIM-EXT for other classes of protocols: 

• Lattice-based / Hash-based 

• Post-quantum analysis in the QROM 

• Recursive SNARKs 

• Tighter rewinding bounds 

• UC security Thank You!

Concrete: .|𝔽| ≈ 2256, n = 64, t(𝒫*) = 248, Q = 240

Problem:   
for expected time .

Adv𝖣𝖫
𝔾 (A) ≤ t(A)2/|𝔽|

A


