
A Tale of Practical
Verifiable Random Functions based

on Post-Quantum Assumptions

Muhammed F. Esgin

Monash University
muhammed.esgin@monash.edu

Lattices meet Hashes Workshop, EPFL – May 2023

@mfesgin

mfesgin.github.io

https://twitter.com/mfesgin
https://mfesgin.github.io/

Zero-knowledge
✓Formal

✓Reveal no info

✓Non-interactive

✓Minimal communication

This talk
✓Informal

✓As informative as possible

✓Interactive

✓Maximal communication

2

Outline

• What is a Verifiable Random Function (VRF)?

• Our post-quantum (PQ) VRF proposals
• LB-VRF : first practical PQ VRF, from lattices (limited few-time pseudorandomness)

• X-VRF : XMSS-based VRF (many-time but still limited and stateful)

• SL-VRF : full-fledged VRF from symmetric primitives only
• iVRF : an indexed VRF variant targeting blockchain apps
• LaV : full-fledged VRF from lattices

• Take away: Use
• iVRF for blockchain (e.g. Algorand-like systems)

• LaV if you need full-fledged VRF

3

Comparison of properties

4

Scheme
Communication

Size (bytes)
Key

Homomorphism Long Term Stateless
Low Storage &

Fast Keygen Security Basis

SL-VRF
ia.cr/2021/302

40,000* ✓ ✓ ✓ Block cipher

LaV
ia.cr/2022/141

12,000 ✓ ✓ ✓ ✓ Lattice

LB-VRF
ia.cr/2020/1222

8,340** ✓ ✓ ✓ Lattice

X-VRF
ia.cr/2021/302

2,720 Partial Hash

iVRF
ia.cr/2022/993

608 Partial Hash

*40KB size of SL-VRF is for LowMC block cipher. Using a more standard block cipher would likely further increase its size.
**LB-VRF comm. size includes the size of a public key since the construction is one-time, and therefore, requires continuous communication of PK.

Verifiable Random Function (VRF)

• Introduced by Micali, Rabin and Vadhan in 1999

• Goal: generate a secret-dependent random value in a verifiable fashion

• Most prominent proposals:
• ECVRF based on elliptic curves - used by Algorand, Cardano

• BLS-VRF based on pairings/BLS signature - used by Dfinity

• Advantages of EC/BLS-VRF
• Does not require heavy machinery

• Efficiency close to signature schemes

• Applications
• Proof-of-Stake (PoS) based blockchain protocols

• DNSSEC protocol

• Key transparency: Google, Yahoo, and WhatsApp
5

NOT post-
quantum secure!

Verifiable Random Functions – a bit more formally

• 𝑝𝑝 ← ParamGen 1𝜆

• 𝑝𝑘, 𝑠𝑘 ← KeyGen 𝑝𝑝

• 𝑣, 𝜋 ← VRFEval𝑠𝑘 𝑥

• 0/1 ← Verify𝑝𝑘 𝑣, 𝑥, 𝜋

6

Properties:

• Provability
Verification of an honest VRF run succeeds

• Pseudorandomness
VRF value 𝑣 is pseudorandom (without 𝜋 given)

• Unconditional Full Uniqueness
For fixed (𝑝𝑘, 𝑥), there exists only a single VRF
value 𝑣 for which valid proof(s) can be created

Verifiable Random Functions – a bit more formally

• 𝑝𝑝 ← ParamGen 1𝜆

• 𝑝𝑘, 𝑠𝑘 ← KeyGen 𝑝𝑝

• 𝑣, 𝜋 ← VRFEval𝑠𝑘 𝑥

• 0/1 ← Verify𝑝𝑘 𝑣, 𝑥, 𝜋

7

Properties:

• Provability
Verification of an honest VRF run succeeds

• 𝜿-Pseudorandomness
VRF value 𝑣 is pseudorandom as long as
adversary sees at most 𝜅 outputs

• Unconditional Full Uniqueness
For fixed (𝑝𝑘, 𝑥), there exists only a single VRF
value 𝑣 for which valid proof(s) can be created

Verifiable Random Functions – a bit more formally

• 𝑝𝑝 ← ParamGen 1𝜆

• 𝑝𝑘, 𝑠𝑘 ← KeyGen 𝑝𝑝

• 𝑣, 𝜋 ← VRFEval𝑠𝑘 𝑥

• 0/1 ← Verify𝑝𝑘 𝑣, 𝑥, 𝜋

8

Properties:

• Provability
Verification of an honest VRF run succeeds

• 𝜿-Pseudorandomness
VRF value 𝑣 is pseudorandom as long as
adversary sees at most 𝜅 outputs

• Computational Full Uniqueness
For fixed (𝑝𝑘, 𝑥), PPT adversary cannot create
two distinct VRF values 𝑣1 ≠ 𝑣2 along with valid
proofs

A folklore VRF approach (using random oracles)

• Take a PRF (with certain properties)

• Glue it with a Non-Interactive Zero-Knowledge (NIZK) proof
• to prove honest PRF evaluation in zero-knowledge

• That gives verifiable PRF => VRF

9

Desired PRF Properties

• Notation
𝐾: key space
𝐾′: extended key space (to accommodate for relaxed NIZK soundness)
𝑇: output space
𝑅: underlying (commutative) scalar ring

• Key-binding:
Pr 𝑚, 𝑘0, 𝑘1 ← 𝐴 ∶ 𝑘1 ≠ 𝑘0 and PRF𝑘1 𝑚 = PRF𝑘0 𝑚 < negl
• Can be statistical or computational

• Additive key-homomorphism:
PRF𝛼⋅𝑘0+𝑘1 𝑚 = 𝛼 ⊗ PRF𝑘0 𝑚 ⊕ PRF𝑘1 𝑚

for some homomorphism space 𝑆 ⊆ 𝑅
10

NIZK

• We require NIZK to prove

Relvrf = { 𝑚, 𝑝𝑘, 𝑣 , 𝑓, 𝑘 ∶ 𝑓 ⊗ 𝑝𝑘 = PRF𝑘 0 , 𝑓 ⊗ 𝑣 = PRF𝑘 𝑚 ,
𝑓 ∈ 𝐹 and 𝑓′ ⋅ 𝑘 ∈ 𝐾′ for all 𝑓′ ∈ 𝐹}

for a set 𝐹 ⊆ 𝑅 of “relaxation factors”

• Note: 𝐹 = 1 for typical DL-based proofs
• So, 𝐾′ = 𝐾 is sufficient

11

Folklore VRF from PRF+NIZK

• ParamGen: generate NIZK public params and publish them

• KeyGen: Sample random 𝑘 ← 𝐾, set 𝑝𝑘 = PRF𝑘 0 and 𝑠𝑘 = 𝑘

• VRFEval(𝑚, 𝑘):
• Compute 𝑣 = PRF𝑘(𝑚)

• Generate NIZK 𝜋 for Relvrf
• Output 𝑣 as VRF value and 𝜋 as VRF proof

• Verify: run NIZK verification

12

VRF Security discussion (informal)

• Provability: easy

• 𝜿-Pseudorandomness: follows from
• NIZK simulatability

• PRF 𝜅-pseudorandomness

• Uniqueness: let’s look more into it!

13

Uniqueness of Folklore VRF (with relaxed NIZK)

• Suppose (𝑣1, 𝜋1) and (𝑣2, 𝜋2)
accepting for (m, pk)

• Use NIZK extractor to get

• By PRF key-binding, (and commutativity of 𝑅)

• By PRF key-homomorphism,

• Assuming relaxation factors are invertible, we get
𝑣1 = 𝑣2

14

over 𝑅
No key-binding required!

Some instantiations of
folklore VRF approach

15

ECVRF [PWH+17] (ia.cr/2017/099) (Discrete log based)

• DL-based PRF
𝑔𝑠 = 𝑣

where 𝑔 ← 𝐺(𝑚) for random oracle 𝐺, and
𝑘 = 𝑠 is a standard DL secret

• Easy to see homomorphism and statistical key-binding

• Glue it with DL proof of equality

16

LB-VRF [EKS+, FC’21] (Module-SIS and Module-LWE)

• MLWE-based PRF
PRF𝑘 𝑚 = 𝑨 ⋅ 𝒔 + 𝒆

where 𝑨 ← 𝐺(𝑚) for random oracle 𝐺, and
𝑘 = 𝒔 is secret vector generated at KeyGen

• But, how about the error 𝒆?
• Can’t let 𝒆 chosen randomly each time in Eval: breaks uniqueness!

• Solution: Fix 𝒆 at KeyGen (and prove its use in Eval)

• Then, for each VRFEval, we reveal (𝒗𝒊, 𝑨𝒊) for fixed (𝒔, 𝒆)

• So, can only Eval a few times (pk size ∼ 𝑂(𝜅))

17

MLWE-based PRF: Properties
• Key-homomorphism:

Easy to see
𝛼 ⋅ 𝑨 ⋅ 𝒔𝟏 + 𝒆𝟏 + 𝑨 ⋅ 𝒔𝟐 + 𝒆𝟐 = 𝑨 ⋅ 𝛼 ⋅ 𝒔𝟏 + 𝒔𝟐 + (𝛼 ⋅ 𝒆𝟏 + 𝒆𝟐)

• Key-binding: Assume we find (relatively) short 𝒔𝟏, 𝒆𝟏 ≠ 𝒔𝟐, 𝒆𝟐
𝑨 ⋅ 𝒔𝟏 + 𝒆𝟏 = 𝑨 ⋅ 𝒔𝟐 + 𝒆𝟐

⇒ 𝑨 || 𝑰 ⋅
𝒔𝟏 − 𝒔𝟐
𝒆𝟏 − 𝒆𝟐

= 𝟎

Computationally hard due to Module-SIS!

• We show: relaxed NIZK proof of knowledge of short secret vector
sufficient

18

LaV [ESLR22] (Module-SIS and Module-LWR)

• MLWR-based PRF
PRF𝑘 𝑚 = 𝑨 ⋅ 𝒔 𝑝

where 𝑨 ← 𝐺(𝑚) for random oracle 𝐺, and
𝑘 = 𝒔 is secret vector generated at KeyGen (and 𝑝 divides 𝑞)

• Now, have deterministic error
• Can be generated at each Eval

• Can evaluate for 2128 times (→ ever-lasting LOVE/LaV)

• Ok, but why not do this in the first place?
• More difficult to prove rounding relation (in terms of efficiency)!

19

MLWR-based PRF: Properties

• (Almost) Key homomorphism:
𝑨 ⋅ 𝒔𝟏 𝑝 + 𝑨 ⋅ 𝒔𝟐 𝑝 ≈ 𝑨 ⋅ 𝒔𝟏 + 𝒔𝟐 𝑝

• Key-binding: Similarly argued as in MLWE-based PRF

20

How to prove rounding?

21

Fact
𝒗 = 𝒖 𝑝 for 𝑝 | 𝑞 ⇔

∃𝒆 ∈ 𝑞/𝑝 𝑛 with 𝒆 = 𝒖 −
𝑞

𝑝
⋅ 𝒗 mod 𝑞

1) Must really prove this exactly!

2) Try to exploit relaxed proofs

LANES+: Framework for Hybrid Exact/Relaxed Proofs

• Want to prove
𝑨𝒓 + 𝑩𝒎 = 𝒕 over 𝑅𝑞,𝑑 = ℤ𝑞 𝑋 /(𝑋𝑑 + 1)

• Can use an exact proof
• But less efficient than relaxed ones

• Particularly gets costly with increasing witness dimension

• Imagine want to prove knowledge of a single LWE sample: 𝒂, 𝒔 + 𝑒

• Interested in: exactness only needed for 𝒎, but not for 𝒓

• Can we build an efficient hybrid exact/relaxed proof framework?
22

LANES+: Framework for Hybrid Exact/Relaxed Proofs

• Need two ingredients: RPoK and LANES (or an exact proof)

23

Standard RPoK Proof

• Proves: ҧ𝑐 ⋅ 𝒕 = 𝑨𝒎′ + 𝑩𝒓′ where 𝒎′, 𝒓′, ҧ𝑐 are (relatively) short

24

LANES Proof

• Exact (lattice) proof system due to a series of works
• [ALS20] (ia.cr/2020/517)

• [ENS20] (ia.cr/2020/518)

• [LNS20] (ia.cr/2020/1183)

• Can prove linear and multiplicative relations:

25

LANES+: RPoK + LANES

26

Multiplied by
𝐮
𝐦
𝑣

LANES+ (cont’d)

• Can support many other exact proofs
• For example, LNP22 proof system

• For small-dim 𝒎, use LANES

• For medium-dim 𝒎, use LNP22

• Can support different moduli for RPoK and LANES
• Important for VRF application (to use the rounding fact)

• No assumption on the shape of 𝑩
• Can be expanding

27[LNP22] V. Lyubashevsky, N. K. Nguyen, and M. Plançon. Lattice-based zero-knowledge proofs and applications: Shorter, simpler, and more general. In CRYPTO, 2022

Back to LaV

• Instantiate LANES+ to prove
•
𝑞

𝑝
⋅ 𝒗 = 𝑩𝒔 − 𝒆 mod 𝑞, and

• 𝒆 ∈ 𝑞/𝑝 𝑛 (using multiplicative proof in LANES)

• Shrink the dimension of 𝒆 as much as possible
• Concrete instantiation: 𝑒 is a single polynomial of degree <32

with coefficients in [0,… , 61)
• i.e., only about 6 ⋅ 32 = 192 bits of entropy
• However, entropy 𝒔, 𝒆 > 7,000 bits typically

• Costs
• Exact proof (LANES): 8.8 KB
• Relaxed proof: 3.2 KB

28

(can we do exact range proof more efficiently?)

Symmetric-key based VRFs

29

SL-VRF [BDE+, Esorics’22] (symmetric primitives)

• Take a symmetric-key based PRF
• LowMC is used in the paper

• Glue it with symmetric-key based NIZK
• KKW18 proof is used in the paper

• Used as a baseline

30[KKW18] J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge with applications to post-quantum signatures. In ACM CCS, 2018

X-VRF [BDE+, Esorics’22] (XMSS based)

• XMSS works as follows (briefly)

• XMSS sig = (WOTS+ sig, idx, auth. path)

31

X-VRF (cont’d)

• Set 𝑣 = 𝐻(XMSS. sig,𝑚) for random oracle 𝐻

• WOTS+ sig is an (iterated) hash of some random strings

• So pseudorandomness is easy to argue

• Uniqueness: a bit tricky
• If signed w.r.t. different leaves, then uniqueness breaks down

• Get around: Force users to sign w.r.t. a fixed leaf

32

indexed VRF (iVRF)
For blockchain

33

How common leader election approaches work

• Goal: Choose someone to decide on the next block

• 𝑛: the round number

• 𝑖: the user number

• Assume a random “magic” number 𝑄𝑛 at each round

34

A view of Algorand’s approach

• Ask users to pick a private function 𝐻𝑠𝑘𝑖 in advance
• Corresponding public key 𝑝𝑘𝑖 on chain ensures no change of 𝐻𝑠𝑘𝑖

• At round 𝑛, users check if 𝑣𝑖,𝑛 ≔ 𝐻𝑠𝑘𝑖 𝑄𝑛 < 𝑇𝑖,𝑛
for a (stake-dependent) threshold 𝑇𝑖,𝑛

• If successful, output 𝑣𝑖,𝑛 and a crypt. proof 𝜋𝑖,𝑛 that 𝑣𝑖,𝑛 = 𝐻𝑠𝑘𝑖
𝑄𝑛

35

A view of Bitcoin’s approach

• At round 𝑛, use 𝑄𝑛 to randomly select a global one-way function 𝐻𝑄𝑛

• Let users race real-time to find a “lucky” input 𝑥 with 𝐻𝑄𝑛 𝑥 < 𝑇
for some threshold 𝑇

36

A view of our approach

• Ask users to (vector) commit to input 𝑥𝑖,𝑛 in advance

• At round 𝑛, use 𝑄𝑛 to select a global random function 𝐻𝑄𝑛 (as Bitcoin)

• At round 𝑛, users check if 𝑣𝑖,𝑛 ≔ 𝐻𝑄𝑛 𝑥𝑖,𝑛 < 𝑇𝑖,𝑛

• If successful, reveal 𝑣𝑖,𝑛 and 𝑥𝑖,𝑛

37

“Dual” view of our approach

• Ask users to (vector) commit to 𝑥𝑖,𝑛 defining 𝐻𝑥𝑖,𝑛
in advance

• At round 𝑛, use 𝑄𝑛 as a fixed global input

• At round 𝑛, users check if 𝑣𝑖,𝑛 ≔ 𝐻𝑥𝑖,𝑛 𝑄𝑛 < 𝑇𝑖,𝑛

• If successful, reveal 𝑣𝑖,𝑛 and 𝐻𝑥𝑖,𝑛 (i.e., 𝑥𝑖,𝑛)

• No need for a (complicated) zero-knowledge proof

38

Ok, but what is this tool that we are using here?

• Want uniqueness: a user can generate a single 𝑣𝑖,𝑛 at round 𝑛

• Want pseudorandomness: 𝑣𝑖,𝑛 looks random

• Ok, so this is a VRF?

Not quite!

• Seems like the (regular) VRF properties may not be the right fit for
blockchain leader election

• Do NOT need pseudorandomness for past rounds!

39

Indexed VRF [EEK+, AsiaCCS 2023]

• VRF input additionally has an index (round number in blockchain)

• Pseudorandomness: only holds against “future” indices

• Uniqueness: only holds for a fixed (index, msg) pair

• This model seems to fit the blockchain setting better

40

Advantages of our iVRF approach

• Simplicity and flexibility: well-known, simple tools.
Any signature and (cryptographic) hash can be used

• Sustainability: no racing condition ⇒ no need to compete for more power

• Efficiency: the extra cost for VRF functionality (on top of forward-secure
signature) is just 32 bytes

• (Post-Quantum) Security: leader election part only uses hash (safest PQ
option)
• Security proof in the standard model

No random oracles ⇒ no need for Quantum Random Oracle Model analysis

41

Performance Results

42

Efficiency comparison

43

Scheme
Proof Size

(bytes)
Public Key

Size (bytes)
VRF Value

Size (bytes)
Keygen Time

(ms)
Evaluation
Time (ms)

Verification
Time (ms)

Number of
Evaluations

SL-VRF
ia.cr/2021/302

40,000 48 32 0.38 765 475 Unlimited

LaV
ia.cr/2022/141

12,000 6,400 124 - - - Unlimited

LB-VRF
ia.cr/2020/1222

5,000 3,300 84 0.33 3.10 1.30 1

X-VRF
ia.cr/2021/302

2,720 64 32 426000 0.74 0.90 218

iVRF
ia.cr/2022/993

608 32 0 < 3087 0.01 0.02 218

(non-PQ) EC-VRF
ia.cr/2017/099

80 32 32 0.05 0.10 0.10 Unlimited

Open Questions

• Security analysis in Quantum Random Oracle Model (QROM)
• All VRFs discussed are in ROM

• Promising direction by Peikert and Xu for ECVRF (ia.cr/2023/223)

• More advanced VRF constructions like oblivious VRF

• More applications of LANES+ (work in progress)

• Efficient PQ VRF based on other assumptions
• Recent isogeny-based work by Yi-Fu Lai: 35-40 KB proofs (ia.cr/2023/182)

44

Designated-Verifier zk-SNARKs from Lattices

Base encryption Quasi-optimal ZK technique

ISW21
(ia.cr/2021/977)

MLWE-Regev NO Exponential
smudging

Our work
(ia.cr/2022/1690)

MLWE-HalfGSW YES Polynomial re-
randomization

45

Proof Size
(KB)

Compressed CRS Size
(GB)

CRS Size
(GB)

ISW21 33.0 10 337

Our work – VI 10.7 12 391

Our work – V 8.7 15 344

Our work – IV 6.5 26 410

Our work – III 6.1 36 454

Our work – II 5.8 76 442

Our work – I 5.3 252 1368

sec. level≈128 bits
N=220 constraints

THANK YOU!

46

Please feel free to contact me:
muhammed.esgin@monash.edu

@mfesgin

mfesgin.github.io

Full versions of these works
and implementation codes:
mfesgin.github.io/publications/

mailto:muhammed.esgin@monash.edu
https://twitter.com/mfesgin
https://mfesgin.github.io/
https://mfesgin.github.io/publications/

