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Zero-knowledge
✓Formal

✓Reveal no info

✓Non-interactive

✓Minimal communication

This talk
✓Informal

✓As informative as possible

✓Interactive

✓Maximal communication
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Outline

• What is a Verifiable Random Function (VRF)?

• Our post-quantum (PQ) VRF proposals
• LB-VRF : first practical PQ VRF, from lattices (limited few-time pseudorandomness)

• X-VRF : XMSS-based VRF (many-time but still limited and stateful)

• SL-VRF : full-fledged VRF from symmetric primitives only
• iVRF : an indexed VRF variant targeting blockchain apps
• LaV : full-fledged VRF from lattices

• Take away: Use
• iVRF for blockchain (e.g. Algorand-like systems)

• LaV if you need full-fledged VRF
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Comparison of properties
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Scheme
Communication 

Size (bytes)
Key 

Homomorphism Long Term Stateless
Low Storage & 

Fast Keygen Security Basis

SL-VRF
ia.cr/2021/302

40,000*  ✓ ✓ ✓ Block cipher

LaV
ia.cr/2022/141

12,000 ✓ ✓ ✓ ✓ Lattice

LB-VRF
ia.cr/2020/1222

8,340** ✓  ✓ ✓ Lattice

X-VRF
ia.cr/2021/302

2,720  Partial   Hash

iVRF
ia.cr/2022/993

608  Partial   Hash

*40KB size of SL-VRF is for LowMC block cipher. Using a more standard block cipher would likely further increase its size.
**LB-VRF comm. size includes the size of a public key since the construction is one-time, and therefore, requires continuous communication of PK.



Verifiable Random Function (VRF)

• Introduced by Micali, Rabin and Vadhan in 1999

• Goal: generate a secret-dependent random value in a verifiable fashion

• Most prominent proposals:
• ECVRF based on elliptic curves - used by Algorand, Cardano

• BLS-VRF based on pairings/BLS signature - used by Dfinity

• Advantages of EC/BLS-VRF
• Does not require heavy machinery

• Efficiency close to signature schemes

• Applications
• Proof-of-Stake (PoS) based blockchain protocols

• DNSSEC protocol

• Key transparency: Google, Yahoo, and WhatsApp
5

NOT post-
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Verifiable Random Functions – a bit more formally

• 𝑝𝑝 ← ParamGen 1𝜆

• 𝑝𝑘, 𝑠𝑘 ← KeyGen 𝑝𝑝

• 𝑣, 𝜋 ← VRFEval𝑠𝑘 𝑥

• 0/1 ← Verify𝑝𝑘 𝑣, 𝑥, 𝜋
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Properties:

• Provability
Verification of an honest VRF run succeeds

• Pseudorandomness
VRF value 𝑣 is pseudorandom (without 𝜋 given)

• Unconditional Full Uniqueness
For fixed (𝑝𝑘, 𝑥), there exists only a single VRF 
value 𝑣 for which valid proof(s) can be created
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Properties:

• Provability
Verification of an honest VRF run succeeds

• 𝜿-Pseudorandomness
VRF value 𝑣 is pseudorandom as long as 
adversary sees at most 𝜅 outputs

• Unconditional Full Uniqueness
For fixed (𝑝𝑘, 𝑥), there exists only a single VRF 
value 𝑣 for which valid proof(s) can be created
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Properties:

• Provability
Verification of an honest VRF run succeeds

• 𝜿-Pseudorandomness
VRF value 𝑣 is pseudorandom as long as 
adversary sees at most 𝜅 outputs

• Computational Full Uniqueness
For fixed (𝑝𝑘, 𝑥), PPT adversary cannot create 
two distinct VRF values 𝑣1 ≠ 𝑣2 along with valid 
proofs



A folklore VRF approach (using random oracles)

• Take a PRF (with certain properties)

• Glue it with a Non-Interactive Zero-Knowledge (NIZK) proof
• to prove honest PRF evaluation in zero-knowledge

• That gives verifiable PRF => VRF
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Desired PRF Properties

• Notation
𝐾: key space
𝐾′: extended key space (to accommodate for relaxed NIZK soundness)
𝑇: output space
𝑅: underlying (commutative) scalar ring

• Key-binding: 
Pr 𝑚, 𝑘0, 𝑘1 ← 𝐴 ∶ 𝑘1 ≠ 𝑘0 and PRF𝑘1 𝑚 = PRF𝑘0 𝑚 < negl
• Can be statistical or computational

• Additive key-homomorphism:
PRF𝛼⋅𝑘0+𝑘1 𝑚 = 𝛼 ⊗ PRF𝑘0 𝑚 ⊕ PRF𝑘1 𝑚

for some homomorphism space 𝑆 ⊆ 𝑅
10



NIZK

• We require NIZK to prove

Relvrf = { 𝑚, 𝑝𝑘, 𝑣 , 𝑓, 𝑘 ∶ 𝑓 ⊗ 𝑝𝑘 = PRF𝑘 0 , 𝑓 ⊗ 𝑣 = PRF𝑘 𝑚 ,
𝑓 ∈ 𝐹 and 𝑓′ ⋅ 𝑘 ∈ 𝐾′ for all 𝑓′ ∈ 𝐹}

for a set 𝐹 ⊆ 𝑅 of “relaxation factors”

• Note: 𝐹 = 1 for typical DL-based proofs
• So, 𝐾′ = 𝐾 is sufficient
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Folklore VRF from PRF+NIZK

• ParamGen: generate NIZK public params and publish them

• KeyGen: Sample random 𝑘 ← 𝐾, set 𝑝𝑘 = PRF𝑘 0 and 𝑠𝑘 = 𝑘

• VRFEval(𝑚, 𝑘):
• Compute 𝑣 = PRF𝑘(𝑚)

• Generate NIZK 𝜋 for Relvrf
• Output 𝑣 as VRF value and 𝜋 as VRF proof

• Verify: run NIZK verification
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VRF Security discussion (informal)

• Provability: easy

• 𝜿-Pseudorandomness: follows from 
• NIZK simulatability

• PRF 𝜅-pseudorandomness

• Uniqueness: let’s look more into it!

13



Uniqueness of Folklore VRF (with relaxed NIZK)

• Suppose (𝑣1, 𝜋1) and (𝑣2, 𝜋2)
accepting for (m, pk)

• Use NIZK extractor to get

• By PRF key-binding, (and commutativity of 𝑅)

• By PRF key-homomorphism,

• Assuming relaxation factors are invertible, we get
𝑣1 = 𝑣2

14

over 𝑅
No key-binding required!



Some instantiations of 
folklore VRF approach
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ECVRF [PWH+17] (ia.cr/2017/099) (Discrete log based)

• DL-based PRF
𝑔𝑠 = 𝑣

where 𝑔 ← 𝐺(𝑚) for random oracle 𝐺, and
𝑘 = 𝑠 is a standard DL secret

• Easy to see homomorphism and statistical key-binding

• Glue it with DL proof of equality
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LB-VRF [EKS+, FC’21] (Module-SIS and Module-LWE)

• MLWE-based PRF
PRF𝑘 𝑚 = 𝑨 ⋅ 𝒔 + 𝒆

where 𝑨 ← 𝐺(𝑚) for random oracle 𝐺, and 
𝑘 = 𝒔 is secret vector generated at KeyGen

• But, how about the error 𝒆?
• Can’t let 𝒆 chosen randomly each time in Eval: breaks uniqueness!

• Solution: Fix 𝒆 at KeyGen (and prove its use in Eval)

• Then, for each VRFEval, we reveal (𝒗𝒊, 𝑨𝒊) for fixed (𝒔, 𝒆)

• So, can only Eval a few times       (pk size ∼ 𝑂(𝜅))
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MLWE-based PRF: Properties
• Key-homomorphism:

Easy to see 
𝛼 ⋅ 𝑨 ⋅ 𝒔𝟏 + 𝒆𝟏 + 𝑨 ⋅ 𝒔𝟐 + 𝒆𝟐 = 𝑨 ⋅ 𝛼 ⋅ 𝒔𝟏 + 𝒔𝟐 + (𝛼 ⋅ 𝒆𝟏 + 𝒆𝟐)

• Key-binding: Assume we find (relatively) short 𝒔𝟏, 𝒆𝟏 ≠ 𝒔𝟐, 𝒆𝟐
𝑨 ⋅ 𝒔𝟏 + 𝒆𝟏 = 𝑨 ⋅ 𝒔𝟐 + 𝒆𝟐

⇒ 𝑨 || 𝑰 ⋅
𝒔𝟏 − 𝒔𝟐
𝒆𝟏 − 𝒆𝟐

= 𝟎

Computationally hard due to Module-SIS!

• We show: relaxed NIZK proof of knowledge of short secret vector 
sufficient
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LaV [ESLR22] (Module-SIS and Module-LWR)

• MLWR-based PRF
PRF𝑘 𝑚 = 𝑨 ⋅ 𝒔 𝑝

where 𝑨 ← 𝐺(𝑚) for random oracle 𝐺, and 
𝑘 = 𝒔 is secret vector generated at KeyGen (and 𝑝 divides 𝑞)

• Now, have deterministic error 
• Can be generated at each Eval

• Can evaluate for 2128 times (→ ever-lasting LOVE/LaV)

• Ok, but why not do this in the first place?
• More difficult to prove rounding relation (in terms of efficiency)!

19



MLWR-based PRF: Properties

• (Almost) Key homomorphism:
𝑨 ⋅ 𝒔𝟏 𝑝 + 𝑨 ⋅ 𝒔𝟐 𝑝 ≈ 𝑨 ⋅ 𝒔𝟏 + 𝒔𝟐 𝑝

• Key-binding: Similarly argued as in MLWE-based PRF

20



How to prove rounding?
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Fact
𝒗 = 𝒖 𝑝 for 𝑝 | 𝑞 ⇔

∃𝒆 ∈ 𝑞/𝑝 𝑛 with     𝒆 = 𝒖 −
𝑞

𝑝
⋅ 𝒗 mod 𝑞

1) Must really prove this exactly!

2) Try to exploit relaxed proofs



LANES+: Framework for Hybrid Exact/Relaxed Proofs

• Want to prove
𝑨𝒓 + 𝑩𝒎 = 𝒕 over 𝑅𝑞,𝑑 = ℤ𝑞 𝑋 /(𝑋𝑑 + 1)

• Can use an exact proof
• But less efficient than relaxed ones

• Particularly gets costly with increasing witness dimension

• Imagine want to prove knowledge of a single LWE sample: 𝒂, 𝒔 + 𝑒

• Interested in: exactness only needed for 𝒎, but not for 𝒓

• Can we build an efficient hybrid exact/relaxed proof framework?
22



LANES+: Framework for Hybrid Exact/Relaxed Proofs

• Need two ingredients: RPoK and LANES (or an exact proof)
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Standard RPoK Proof

• Proves: ҧ𝑐 ⋅ 𝒕 = 𝑨𝒎′ + 𝑩𝒓′ where 𝒎′, 𝒓′, ҧ𝑐 are (relatively) short

24



LANES Proof

• Exact (lattice) proof system due to a series of works
• [ALS20] (ia.cr/2020/517)

• [ENS20] (ia.cr/2020/518)

• [LNS20] (ia.cr/2020/1183)

• Can prove linear and multiplicative relations:
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LANES+: RPoK + LANES

26

Multiplied by
𝐮
𝐦
𝑣



LANES+ (cont’d)

• Can support many other exact proofs
• For example, LNP22 proof system

• For small-dim 𝒎, use LANES

• For medium-dim 𝒎, use LNP22

• Can support different moduli for RPoK and LANES
• Important for VRF application (to use the rounding fact)

• No assumption on the shape of 𝑩
• Can be expanding

27[LNP22] V. Lyubashevsky, N. K. Nguyen, and M. Plançon. Lattice-based zero-knowledge proofs and applications: Shorter, simpler, and more general. In CRYPTO, 2022



Back to LaV

• Instantiate LANES+ to prove
•
𝑞

𝑝
⋅ 𝒗 = 𝑩𝒔 − 𝒆 mod 𝑞,  and

• 𝒆 ∈ 𝑞/𝑝 𝑛 (using multiplicative proof in LANES)

• Shrink the dimension of 𝒆 as much as possible
• Concrete instantiation: 𝑒 is a single polynomial of degree <32

with coefficients in [0,… , 61)
• i.e., only about 6 ⋅ 32 = 192 bits of entropy
• However, entropy 𝒔, 𝒆 > 7,000 bits typically

• Costs
• Exact proof (LANES): 8.8 KB
• Relaxed proof: 3.2 KB

28

(can we do exact range proof more efficiently?)



Symmetric-key based VRFs
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SL-VRF [BDE+, Esorics’22] (symmetric primitives)

• Take a symmetric-key based PRF
• LowMC is used in the paper

• Glue it with symmetric-key based NIZK
• KKW18 proof is used in the paper

• Used as a baseline

30[KKW18] J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge with applications to post-quantum signatures. In ACM CCS, 2018



X-VRF [BDE+, Esorics’22] (XMSS based)

• XMSS works as follows (briefly)

• XMSS sig = (WOTS+ sig, idx, auth. path)
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X-VRF (cont’d)

• Set 𝑣 = 𝐻(XMSS. sig,𝑚) for random oracle 𝐻

• WOTS+ sig is an (iterated) hash of some random strings 

• So pseudorandomness is easy to argue

• Uniqueness: a bit tricky
• If signed w.r.t. different leaves, then uniqueness breaks down

• Get around: Force users to sign w.r.t. a fixed leaf

32



indexed VRF (iVRF)
For blockchain
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How common leader election approaches work

• Goal: Choose someone to decide on the next block

• 𝑛: the round number

• 𝑖: the user number

• Assume a random “magic” number 𝑄𝑛 at each round 

34



A view of Algorand’s approach

• Ask users to pick a private function 𝐻𝑠𝑘𝑖 in advance
• Corresponding public key 𝑝𝑘𝑖 on chain ensures no change of 𝐻𝑠𝑘𝑖

• At round 𝑛, users check if 𝑣𝑖,𝑛 ≔ 𝐻𝑠𝑘𝑖 𝑄𝑛 < 𝑇𝑖,𝑛
for a (stake-dependent) threshold 𝑇𝑖,𝑛

• If successful, output 𝑣𝑖,𝑛 and a crypt. proof 𝜋𝑖,𝑛 that 𝑣𝑖,𝑛 = 𝐻𝑠𝑘𝑖
𝑄𝑛
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A view of Bitcoin’s approach

• At round 𝑛, use 𝑄𝑛 to randomly select a global one-way function 𝐻𝑄𝑛

• Let users race real-time to find a “lucky” input 𝑥 with 𝐻𝑄𝑛 𝑥 < 𝑇
for some threshold 𝑇
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A view of our approach

• Ask users to (vector) commit to input 𝑥𝑖,𝑛 in advance

• At round 𝑛, use 𝑄𝑛 to select a global random function 𝐻𝑄𝑛 (as Bitcoin)

• At round 𝑛, users check if 𝑣𝑖,𝑛 ≔ 𝐻𝑄𝑛 𝑥𝑖,𝑛 < 𝑇𝑖,𝑛

• If successful, reveal 𝑣𝑖,𝑛 and 𝑥𝑖,𝑛
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“Dual” view of our approach

• Ask users to (vector) commit to 𝑥𝑖,𝑛 defining 𝐻𝑥𝑖,𝑛
in advance

• At round 𝑛, use 𝑄𝑛 as a fixed global input

• At round 𝑛, users check if 𝑣𝑖,𝑛 ≔ 𝐻𝑥𝑖,𝑛 𝑄𝑛 < 𝑇𝑖,𝑛

• If successful, reveal 𝑣𝑖,𝑛 and 𝐻𝑥𝑖,𝑛 (i.e., 𝑥𝑖,𝑛)

• No need for a (complicated) zero-knowledge proof
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Ok, but what is this tool that we are using here?

• Want uniqueness: a user can generate a single 𝑣𝑖,𝑛 at round 𝑛

• Want pseudorandomness: 𝑣𝑖,𝑛 looks random

• Ok, so this is a VRF? 

Not quite!

• Seems like the (regular) VRF properties may not be the right fit for 
blockchain leader election

• Do NOT need pseudorandomness for past rounds!

39



Indexed VRF       [EEK+, AsiaCCS 2023]

• VRF input additionally has an index (round number in blockchain)

• Pseudorandomness: only holds against “future” indices

• Uniqueness: only holds for a fixed (index, msg) pair

• This model seems to fit the blockchain setting better

40



Advantages of our iVRF approach

• Simplicity and flexibility: well-known, simple tools. 
Any signature and (cryptographic) hash can be used

• Sustainability: no racing condition ⇒ no need to compete for more power

• Efficiency: the extra cost for VRF functionality (on top of forward-secure 
signature) is just 32 bytes

• (Post-Quantum) Security: leader election part only uses hash (safest PQ 
option) 
• Security proof in the standard model

No random oracles ⇒ no need for Quantum Random Oracle Model analysis
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Performance Results
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Efficiency comparison
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Scheme
Proof Size 

(bytes)
Public Key 

Size (bytes)
VRF Value 

Size (bytes)
Keygen Time 

(ms)
Evaluation 
Time (ms)

Verification 
Time (ms)

Number of 
Evaluations

SL-VRF
ia.cr/2021/302

40,000 48 32 0.38 765 475 Unlimited

LaV
ia.cr/2022/141

12,000 6,400 124 - - - Unlimited

LB-VRF
ia.cr/2020/1222

5,000 3,300 84 0.33 3.10 1.30 1

X-VRF
ia.cr/2021/302

2,720 64 32 426000 0.74 0.90 218

iVRF
ia.cr/2022/993

608 32 0 < 3087 0.01 0.02 218

(non-PQ) EC-VRF
ia.cr/2017/099

80 32 32 0.05 0.10 0.10 Unlimited



Open Questions

• Security analysis in Quantum Random Oracle Model (QROM)
• All VRFs discussed are in ROM

• Promising direction by Peikert and Xu for ECVRF   (ia.cr/2023/223)

• More advanced VRF constructions like oblivious VRF

• More applications of LANES+ (work in progress)

• Efficient PQ VRF based on other assumptions
• Recent isogeny-based work by Yi-Fu Lai: 35-40 KB proofs   (ia.cr/2023/182)
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Designated-Verifier zk-SNARKs from Lattices

Base encryption Quasi-optimal ZK technique

ISW21
(ia.cr/2021/977)

MLWE-Regev NO Exponential 
smudging

Our work
(ia.cr/2022/1690)

MLWE-HalfGSW YES Polynomial re-
randomization
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Proof Size
(KB)

Compressed CRS Size
(GB)

CRS Size
(GB)

ISW21 33.0 10 337

Our work – VI 10.7 12 391

Our work – V 8.7 15 344

Our work – IV 6.5 26 410

Our work – III 6.1 36 454

Our work – II 5.8 76 442

Our work – I 5.3 252 1368

sec. level≈128 bits 
N=220 constraints



THANK YOU!
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Please feel free to contact me:
muhammed.esgin@monash.edu

@mfesgin

mfesgin.github.io

Full versions of these works
and implementation codes:
mfesgin.github.io/publications/
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