Lattice-based Succinct Arguments from Vanishing Polynomials

Valerio Cini ${ }^{1}$, Russell W. F. Lai ${ }^{2}$, Giulio Malavolta ${ }^{3}$
${ }^{1}$ AIT Austrian Institute of Technology, Austria
${ }^{2}$ Aalto University, Finland
${ }^{3}$ Max Planck Institute for Security and Privacy, Germany
@Lattices Meet Hashes, Lausanne, Switzerland, 2023

Succinct Arguments

Let R be an NP relation.
\dagger Completeness: If (stmt, wit) $\in R$, then $b=1$ w.h.p.
$\underline{\mathcal{P}(\mathrm{pp}, \mathrm{stmt}, \text { wit })}$
$\underline{\mathcal{V}(p p, s t m t)}$
\dagger Soundness: If (stmt, wit) $\notin R$, then $b=0$ w.h.p.

$$
\mathrm{pp} \leftarrow \operatorname{Setup}\left(1^{\lambda}\right)
$$

Knowledge-soundness: If $b=1$ w.h.p., then \mathcal{P} must "know" wit such that (stmt, wit) $\in R$.
Succinctness: $\left|m_{0}\right|+\left|m_{1}\right|+\ldots+\left|m_{1}\right| \ll \mid$ stmt \mid.
Preprocessing: (Part of) stmt can be preprocessed by \mathcal{V} before talking to \mathcal{P}.
Non-interactive (NI): $\mu=0$.
\qquad
\qquad

C_{μ}
m_{μ}

Succinct Arguments

Let R be an NP relation.
\dagger Completeness: If (stmt, wit) $\in R$, then $b=1$ w.h.p.
$\mathcal{P}(\mathrm{pp}, \mathrm{stm} \mathrm{t}, \mathrm{wit})$
\dagger Soundness: If (stmt, wit) $\notin R$, then $b=0$ w.h.p.
$\xrightarrow{m_{0}}$
$\xrightarrow{\longleftrightarrow}$ Succinctness:
Preprocessing: (Part of) stmt can be preprocessed by \mathcal{V} before talking to \mathcal{P} \qquad
\qquad

Succinct Arguments

Let R be an NP relation.
\dagger Completeness: If (stmt, wit) $\in R$, then $b=1$ w.h.p.
$\mathcal{P}(\mathrm{pp}, \mathrm{stmt}$, wit) $)$
\dagger Soundness: If (stmt, wit) $\notin R$, then $b=0$ w.h.p.
\dagger Knowledge-soundness: If $b=1$ w.h.p., then \mathcal{P} must "know" wit such that (stmt, wit) $\in R$.
\dagger Succinctness: $\left|m_{0}\right|+\left|m_{1}\right|+\ldots+\left|m_{\mu}\right| \ll \mid$ stmt \mid.

$$
\mathrm{pp} \leftarrow \operatorname{Setup}\left(1^{\lambda}\right)
$$

Preprocessing: (Part of) stmt can be preprocessed by \mathcal{V} before talking to \mathcal{P}. \qquad
Non-interactive (NI): $\mu=0$

Succinct Arguments

Let R be an NP relation.

$$
\mathrm{pp} \leftarrow \operatorname{Setup}\left(1^{\lambda}\right)
$$

\dagger Completeness: If $(\mathrm{stmt}$, wit) $) \in R$, then $b=1$ w.h.p.
$\underline{\mathcal{P}(\mathrm{pp}, \mathrm{stm}, \text { wit) })}$
\dagger Soundness: If (stmt, wit) $\notin R$, then $b=0$ w.h.p.

\dagger Succinctness: $\left|m_{0}\right|+\left|m_{1}\right|+\ldots+\left|m_{\mu}\right| \ll \mid$ stmt \mid.
\dagger Preprocessing: (Part of) stmt can be preprocessed by \mathcal{V} before talking to \mathcal{P}.

Succinct Arguments

Let R be an NP relation.

$$
\mathrm{pp} \leftarrow \operatorname{Setup}\left(1^{\lambda}\right)
$$

\dagger Completeness: If $(\mathrm{stmt}$, wit) $) \in R$, then $b=1$ w.h.p.
$\underline{\mathcal{P}(\mathrm{pp}, \mathrm{stm}, \text { wit) })}$
\dagger Soundness: If (stmt, wit) $\notin R$, then $b=0$ w.h.p.

\qquad
\dagger Succinctness: $\left|m_{0}\right|+\left|m_{1}\right|+\ldots+\left|m_{\mu}\right| \ll \mid$ stmt \mid.
\dagger Preprocessing: (Part of) stmt can be preprocessed by \mathcal{V} before talking to \mathcal{P}. \qquad return b

Lattice-based Succinct Arguments

Approach	Publicly verifiable	$\tilde{O}_{\lambda}(1)$-verifier (preprocessing)	$\tilde{O}_{\lambda}(\mid$ stmt $\mid)$-prover
PCP/IOP + linear-only enc. [BCIOP13; BISW17; BISW18; GMNO18]	\times	\checkmark	
Linearisation + folding [BLNS20; AL21; ACK21; BS22]	\checkmark	$\times \tilde{O}_{\lambda}(\mid$ stmt $\mid)$	\checkmark
Direct [ACLMT22]	\checkmark	\checkmark	$\times \tilde{O}_{\lambda}\left(\mid\right.$ stmt $\left.\left.\right\|^{2}\right)$

Direct (this work)

Lattice-based Succinct Arguments

| Approach | Publicly verifiable | $\tilde{O}_{\lambda}(1)$-verifier
 (preprocessing) |
| :--- | :--- | :--- |$\tilde{O}_{\lambda}(\mid$ stmt \mid)-prover

PCP/IOP + linear-only enc.
[BCIOP13; BISW17; BISW18; $\quad x$

GMNO18]

Linearisation + folding [BLNS20; AL21; ACK21; BS22]	\checkmark	$\boldsymbol{x} \tilde{O}_{\lambda}(\mid$ stmt $\mid)$	\checkmark
Direct [ACLMT22]	\checkmark	\checkmark	$\times \tilde{O}_{\lambda}\left(\mid\right.$ stmt $\left.\left.\right\|^{2}\right)$

Direct (this work)

Our Results

\dagger New assumption: Vanishing Short Integer Solution (vSIS)
\ddagger Implied by kRISIS assumption [ACLMT22]
\ddagger Implies kRISIS assumption conditioned on knowledge-kRISIS assumption [ACLMT22]
New tool: vSIS commitment for committing to polynomials with short coefficients
Very small ($\tilde{O}_{\lambda}(1)$) commitment key
(Almost) additively and multiplicatively homomorphic
Admit $\tilde{O}_{\lambda}\left(1\right.$ stmtl) -prover $\tilde{o}_{\lambda}(1)$-verifier arguments for commitment openings
New lattice-based succinct arguments for NP \Leftarrow Succinct arguments for vSIS commitment openings

Our Results

\dagger New assumption: Vanishing Short Integer Solution (vSIS)
\ddagger Implied by kRISIS assumption [ACLMT22]
\ddagger Implies kRISIS assumption conditioned on knowledge-kRISIS assumption [ACLMT22]
\dagger New tool: vSIS commitment for committing to polynomials with short coefficients
\ddagger Very small ($\left.\tilde{O}_{\lambda}(1)\right)$ commitment key
\ddagger (Almost) additively and multiplicatively homomorphic
\ddagger Admit $\tilde{O}_{\lambda}(\mid$ stmt $\mid)$-prover $\tilde{O}_{\lambda}(1)$-verifier arguments for commitment openings
New lattice-based succinct arguments for NP \Leftarrow Succinct arguments for vSIS commitment openings

Our Results

\dagger New assumption: Vanishing Short Integer Solution (vSIS)
\ddagger Implied by kRISIS assumption [ACLMT22]
\ddagger Implies kRISIS assumption conditioned on knowledge-kRISIS assumption [ACLMT22]
\dagger New tool: vSIS commitment for committing to polynomials with short coefficients
\ddagger Very small ($\tilde{O}_{\lambda}(1)$) commitment key
\ddagger (Almost) additively and multiplicatively homomorphic
\ddagger Admit $\tilde{O}_{\lambda}(\mid$ stmt $\mid)$-prover $\tilde{O}_{\lambda}(1)$-verifier arguments for commitment openings
\dagger New lattice-based succinct arguments for NP \Leftarrow Succinct arguments for vSIS commitment openings

Our Results

Instantiations	$\|\pi\|$	$\operatorname{Time}(\mathcal{P})$	Time (\mathcal{V})	Setup	Assumptions
Folding	$\tilde{O}_{\lambda}(1)$	$\tilde{O}_{\lambda}(\mid$ stmt $\mid)$	$\tilde{O}_{\lambda}(1)$	Transparent	vSIS (+ RO for NI)
Knowledge assumption	$\tilde{O}_{\lambda}(1)$	$\tilde{O}_{\lambda}(\mid$ stmt $\mid)$	$\tilde{O}_{\lambda}(1)$	Trusted	vSIS + Knowledge-kRISIS

Roadmap

1. Preliminaries
2. vSIS assumptions and commitments
3. Succinct arguments for vSIS commitment openings
4. Succinct arguments for NP

Number Rings

\dagger Everything we discuss will be over a cyclotomic ring $\mathcal{R}=\mathbb{Z}[\zeta]$.
\dagger For intuition, it is mostly okay to treat $\mathcal{R}=\mathbb{Z}$.

Quotient ring: For $q \in \mathbb{N}, \mathcal{R}_{q}:=\mathcal{R} / q \mathcal{R}$

Units: Denote by \mathcal{R}^{\times}and $\mathcal{R}_{\sigma}^{\times}$sets of units (invertible elements) \mathcal{R} and \mathcal{R}_{q} respectively.
We assume $1 /\left|\mathcal{R}_{q}^{\times}\right|=\operatorname{neg}(\lambda)$.
Norm: For $a \in \mathcal{R},\|a\|$ is some (geometric) norm, e.g. the ∞-norm.

Number Rings

\dagger Everything we discuss will be over a cyclotomic ring $\mathcal{R}=\mathbb{Z}[\zeta]$.
\dagger For intuition, it is mostly okay to treat $\mathcal{R}=\mathbb{Z}$.
\dagger Quotient ring: For $q \in \mathbb{N}, \mathcal{R}_{q}:=\mathcal{R} / q \mathcal{R}$.
\dagger Units: Denote by \mathcal{R}^{\times}and \mathcal{R}_{q}^{\times}sets of units (invertible elements) \mathcal{R} and \mathcal{R}_{q} respectively.
\dagger We assume $1 /\left|\mathcal{R}_{q}^{\times}\right|=\operatorname{negl}(\lambda)$.
\dagger Norm: For $a \in \mathcal{R},\|a\|$ is some (geometric) norm, e.g. the ∞-norm.

Matrix and Vector Notation

\dagger Matrix and vector are bold upper and lower case: \mathbf{M} and \mathbf{v}.
\dagger We usually don't distinguish between row and column vectors.
\dagger When we do, we write transpose, e.g. \mathbf{v}^{\top}, for row vectors.
\dagger Let $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)$ be vectors.
\dagger Inner product: $\langle\mathbf{a}, \mathbf{b}\rangle:=\sum_{i=1}^{m} a_{i} \cdot b_{i}$.
\dagger Hadamard product: $\mathbf{a} \circ \mathbf{b}:=\left(a_{i} \cdot b_{i}\right)_{i=1}^{m}$.

Short Integer Solution (SIS) Assumption

\dagger Parameters: \# rows n, \# columns m, modulus q.
\dagger Instance: A matrix $\mathbf{A} \in \mathcal{R}_{q}^{n \times m}$.
\dagger Problem: Find a short vector $\mathbf{u} \in \mathcal{R}^{m}$ such that
$\mathbf{A} \cdot \mathbf{u}=\mathbf{0} \bmod q$
and

$$
0<\|\mathbf{u}\| \approx 0
$$

\dagger Shorthand: If \mathbf{u} is a short non-zero vector satisfying $\mathbf{A} \cdot \mathbf{u}=\mathbf{v} \bmod q$, write

$$
\mathbf{u} \in \mathbf{A}^{-1}(\mathbf{v})
$$

Vanishing SIS as SIS Generalisations

SIS

Find short solution to linear equations

SIS (Aliernative interpretation)

Find linear function with short coefficients which vanishes at all given points

Vanishing SIS (vSIS)
Find polynomial (from some class) with short coefficients which vanishes at all given points

Vanishing SIS as SIS Generalisations

SIS

Find short solution to linear equations
SIS (Alternative Interpretation)
Find linear function with short coefficients which vanishes at all given points

Vanishing SIS (vSIS)
Find polynomial (from some class) with short coefficients which vanishes at all given points

Vanishing SIS as SIS Generalisations

SIS

Find short solution to linear equations

SIS (Alternative Interpretation)
Find linear function with short coefficients which vanishes at all given points

Vanishing SIS (vSIS)
Find polynomial (from some class) with short coefficients which vanishes at all given points

Vanishing Short Integer Solution (vSIS) Assumption

Example 1: Univariate

\dagger Parameters: Class of univariate degree- m polynomials, modulus q.
\dagger Instance: A unit $v \in \mathcal{R}_{q}^{\times}$.
\dagger Problem: Find short degree m polynomial without constant term

$$
p(X)=p_{1} X+\ldots+p_{m} X^{m} \in \mathcal{R}[X]
$$

which vanishes at v modulo q, i.e.

$$
p(v)=0 \bmod q \quad \text { and } \quad 0<\|p\|:=\max _{i \in[m]}\left\|p_{i}\right\| \approx 0 .
$$

In other words, find short vector $\mathbf{p} \in \mathcal{R}^{m}$ such that

$$
\left(\begin{array}{llll}
v & v^{2} & \ldots & v^{m}
\end{array}\right) \cdot \mathbf{p}=0 \bmod q \quad \text { and } \quad 0<\|\mathbf{p}\| \approx 0
$$

Vanishing Short Integer Solution (vSIS) Assumption

Example 2: Univariate Laurent

\dagger Parameters: Class of univariate "degree-m" Laurent polynomials, modulus q.
\dagger Instance: A unit $v \in \mathcal{R}_{q}^{\times}$.
\dagger Problem: Find short "degree m" Laurent polynomial without constant term

$$
p(X)=p_{-m} X^{-m}+\ldots+p_{-1} X^{-1}+p_{1} X+\ldots+p_{m} X^{m} \in \mathcal{R}\left[X, X^{-1}\right]
$$

which vanishes at v modulo q.

Simple vSIS Commitments (or Hash Functions)

\dagger Domain: Polynomials $p \in \mathcal{R}\left[X, X^{-1}\right]$ (of some class) with short coefficients.
\dagger Public parameters: Random unit $v \longleftarrow \$ \mathcal{R}_{q}^{\times}$.
Commitment of polynomial p:

$$
\operatorname{com}(p)=p(v) \bmod q
$$

Binding: If $p(v)=p^{\prime}(v) \bmod q$, then we break vSIS, i.e.

(Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):

Simple vSIS Commitments (or Hash Functions)

\dagger Domain: Polynomials $p \in \mathcal{R}\left[X, X^{-1}\right]$ (of some class) with short coefficients.
\dagger Public parameters: Random unit $v \longleftarrow \mathcal{R}_{q}^{\times}$.
\dagger Commitment of polynomial p :

$$
\operatorname{com}(p)=p(v) \bmod q
$$

Binding: If $p(v)=p^{\prime}(v) \bmod q$, then we break vSIS, i.e.

$$
\left(p-p^{\prime}\right)(v)=0 \bmod q
$$

(Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):

$$
\begin{aligned}
& p(v)+p^{\prime}(v)=\left(p+p^{\prime}\right)(v) \bmod q \\
& p(v) \cdot p^{\prime}(v)=\left(p \cdot p^{\prime}\right)(v) \bmod q
\end{aligned}
$$

Simple vSIS Commitments (or Hash Functions)

\dagger Domain: Polynomials $p \in \mathcal{R}\left[X, X^{-1}\right]$ (of some class) with short coefficients.
\dagger Public parameters: Random unit $v \longleftarrow \$ \mathcal{R}_{q}^{\times}$.
\dagger Commitment of polynomial p :

$$
\operatorname{com}(p)=p(v) \bmod q
$$

\dagger Binding: If $p(v)=p^{\prime}(v) \bmod q$, then we break vSIS, i.e.

$$
\left(p-p^{\prime}\right)(v)=0 \bmod q \quad\left\|p-p^{\prime}\right\| \leq\|p\|+\left\|p^{\prime}\right\| \approx 0
$$

(Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):

Simple vSIS Commitments (or Hash Functions)

\dagger Domain: Polynomials $p \in \mathcal{R}\left[X, X^{-1}\right]$ (of some class) with short coefficients.
\dagger Public parameters: Random unit $v \longleftarrow \$ \mathcal{R}_{q}^{\times}$.
\dagger Commitment of polynomial p :

$$
\operatorname{com}(p)=p(v) \bmod q
$$

\dagger Binding: If $p(v)=p^{\prime}(v) \bmod q$, then we break vSIS, i.e.

$$
\left(p-p^{\prime}\right)(v)=0 \bmod q
$$

$$
\left\|p-p^{\prime}\right\| \leq\|p\|+\left\|p^{\prime}\right\| \approx 0
$$

\dagger (Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):

$$
\begin{aligned}
p(v)+p^{\prime}(v) & =\left(p+p^{\prime}\right)(v) \bmod q \\
p(v) \cdot p^{\prime}(v) & =\left(p \cdot p^{\prime}\right)(v) \bmod q
\end{aligned}
$$

$$
\left\|p+p^{\prime}\right\| \leq\|p\|+\left\|p^{\prime}\right\| \approx 0
$$

$$
\left\|p \cdot p^{\prime}\right\| \lesssim\|p\| \cdot\left\|p^{\prime}\right\| \approx 0
$$

Encoding Vectors as (Laurent) Polynomials

$$
\begin{aligned}
& \mathbf{a}:=\left(a_{1}, \ldots, a_{m}\right) \in \mathcal{R}^{m} \quad \bar{p}_{\mathbf{a}}(X):=p_{\mathbf{a}}\left(X^{-1}\right): \\
& \mathbf{b}:=\left(b_{1}, \ldots, b_{m}\right) \in \mathcal{R}^{m} \\
& \quad p_{\mathbf{b}}(X)::=b_{1} X+b_{2} X^{2}+\ldots+b_{m} X^{m} \\
& \quad \mathbf{c}:=\left(c_{-m}, \ldots, c_{-1}, c_{0}, c_{1}, \ldots, c_{m}\right) \in \mathcal{R}^{2 m+1} \\
& \hat{p}_{\mathbf{c}}(X):=c_{-m} X^{-m}+\ldots+c_{-1} X^{-1}+c_{0}+c_{1} X+c_{2} X^{2}+\ldots+c_{m} X^{m}
\end{aligned}
$$

Note that

$$
\bar{p}_{\mathrm{a}}(x) \cdot p_{\mathrm{b}}(x)=\hat{p}_{\mathbf{a} * \boldsymbol{b}}(x),
$$

where
$\mathbf{a} * \mathbf{b}:=\left(\sum_{j-i=k} a_{i} \cdot b_{j}\right)_{k=}^{m}$ "convolution", and
constant term is given by $\langle\mathrm{a}, \mathrm{b}\rangle$
If $\langle\mathbf{a}, \mathbf{b}\rangle=c_{0}$, then $\hat{p}_{\mathbf{a} * \mathbf{b}-\mathrm{c}}$ has no constant term.

Encoding Vectors as (Laurent) Polynomials

$$
\begin{aligned}
& \mathbf{a}:=\left(a_{1}, \ldots, a_{m}\right) \in \mathcal{R}^{m} \quad \bar{p}_{\mathbf{a}}(X):=p_{\mathbf{a}}\left(X^{-1}\right):=a_{1} X^{-1}+a_{2} X^{-2}+\ldots+a_{m} X^{-m} \\
& \mathbf{b}:=\left(b_{1}, \ldots, b_{m}\right) \in \mathcal{R}^{m} \\
& \quad p_{\mathbf{b}}(X):=b_{1} X+b_{2} X^{2}+\ldots+b_{m} X^{m} \\
& \mathbf{c}:=\left(c_{-m}, \ldots, c_{-1}, c_{0}, c_{1}, \ldots, c_{m}\right) \in \mathcal{R}^{2 m+1} \\
& \hat{p}_{\mathbf{c}}(X):=c_{-m} X^{-m}+\ldots+c_{-1} X^{-1}+c_{0}+c_{1} X+c_{2} X^{2}+\ldots+c_{m} X^{m}
\end{aligned}
$$

Note that

$$
\bar{p}_{\mathrm{a}}(X) \cdot p_{\mathrm{b}}(X)=\hat{p}_{\mathrm{a} * \mathrm{~b}}(X)
$$

where
$\dagger \mathbf{a} * \mathbf{b}:=\left(\sum_{j-i=k} a_{i} \cdot b_{j}\right)_{k=-m}^{m}$ "convolution", and
\dagger constant term is given by $\langle\mathbf{a}, \mathbf{b}\rangle$.
If $\langle\mathbf{a}, \mathbf{b}\rangle=c_{0}$, then $\hat{p}_{\mathbf{a} * \mathbf{b}-\mathbf{c}}$ has no constant term.

Terminologies for Moving Forward

\dagger Dual vSIS commitment of $\mathbf{a} \in \mathcal{R}^{m}$:

$$
\bar{c}_{\mathrm{a}}=\bar{p}_{\mathrm{a}}(v)=a_{1} v^{-1}+\ldots+a_{m} v^{-m} \bmod q
$$

\dagger (Primal) vSIS commitment of $\mathbf{b} \in \mathcal{R}^{m}$:

$$
c_{\mathrm{b}}=p_{\mathrm{b}}(v)=b_{1} v+\ldots+b_{m} v^{m} \bmod q
$$

\dagger Balanced vSIS commitment of $\mathbf{c} \in \mathcal{R}^{2 m+1}$:

$$
\hat{c}_{\mathrm{c}}=\hat{p}_{\mathrm{c}}(v)=c_{-m} v^{-m}+\ldots+c_{-1} v^{-1}+c_{0}+c_{1} v+c_{2} v^{2}+\ldots+c_{m} X^{m} \bmod q
$$

A Taste of Applications

Suppose

$\dagger \mathbf{a}$ is committed in dual vSIS commitment as $\bar{c}_{\mathbf{a}}:=\bar{p}_{\mathbf{a}}(v)$,
$\dagger \mathbf{b}$ is committed in vSIS commitment as $c_{\mathbf{b}}:=p_{\mathbf{b}}(v)$, and
$\dagger c$ is some given value.
To succinctly prove that $\langle\mathbf{a}, \mathbf{b}\rangle=c$:
Prove that \bar{c}_{a} is a dual vSIS commitment.
Prove that c_{b} is a vSIS commitment.
Prove that $\bar{c}_{\mathrm{a}} \cdot c_{\mathrm{b}}-c$ is a balanced vSIS commitment of a polynomial without constant term.

A Taste of Applications

Suppose

$\dagger \mathbf{a}$ is committed in dual vSIS commitment as $\bar{c}_{\mathbf{a}}:=\bar{p}_{\mathbf{a}}(v)$,
$\dagger \mathbf{b}$ is committed in vSIS commitment as $c_{\mathrm{b}}:=p_{\mathrm{b}}(v)$, and
$\dagger c$ is some given value.
To succinctly prove that $\langle\mathbf{a}, \mathbf{b}\rangle=c$:
\dagger Prove that \bar{c}_{a} is a dual vSIS commitment.
\dagger Prove that c_{b} is a vSIS commitment.
\dagger Prove that $\bar{c}_{\mathrm{a}} \cdot c_{\mathrm{b}}-c$ is a balanced v SIS commitment of a polynomial without constant term.

Coming up

To prove that a vSIS commitment is committing to a (Laurent) polynomial without constant term:

1. using knowledge-kRISIS [ACLMT22], or
2. using folding arguments "Bulletproofs" [BLNS20]

Knowledge-kRISIS Assumption(s) [ACLMT22] (a Member of)

\dagger Parameters:
\ddagger SIS parameters (n, m, q),
\ddagger submodule rank $t<n$, and
$\ddagger t$-tuples of Laurent monomials \mathcal{G}.

Assumption: If a PPT (quantum) algorithm \mathcal{A}, which on input

$\left(\mathbf{A}, \mathbf{T}, v,\left(\mathbf{u}_{\mathrm{g}}\right)_{\mathbf{g} \in \mathcal{G}}\right)$
where
$\mathbf{A} \in \mathcal{R}_{q}^{n \times m}$,

$v \in \mathcal{R}_{q}^{\times}$
and
$\mathbf{u}_{g} \in \mathbf{A}^{-1}(\mathbf{T} \cdot \mathbf{g}(v))$,
can find (\mathbf{u}, c) where

then it must "know" short linear combination \mathbf{x} such that

Knowledge-kRISIS Assumption(s) [ACLMT22] (a Member of)

\dagger Parameters:
\ddagger SIS parameters (n, m, q),
\ddagger submodule rank $t<n$, and
$\ddagger t$-tuples of Laurent monomials \mathcal{G}.
\dagger Assumption: If a PPT (quantum) algorithm \mathcal{A}, which on input

$$
\left(\mathbf{A}, \mathbf{T}, v,\left(\mathbf{u}_{\mathbf{g}}\right)_{\mathbf{g} \in \mathcal{G}}\right)
$$

where $\quad \mathbf{A} \in \mathcal{R}_{q}^{n \times m}, \quad \mathbf{T} \in\left(\mathcal{R}_{q}^{\times}\right)^{n \times t}, \quad v \in \mathcal{R}_{q}^{\times}, \quad$ and $\quad \mathbf{u}_{g} \in \mathbf{A}^{-1}(\mathbf{T} \cdot \mathbf{g}(v))$,
can find (\mathbf{u}, \mathbf{c}) where

$$
\mathbf{u} \in \mathbf{A}^{-1}(\mathbf{T} \cdot \mathbf{c})
$$

then it must "know" short linear combination \mathbf{x} such that

$$
\mathbf{c}=\sum_{g \in \mathcal{G}} \mathbf{g}(v) \cdot x_{g} \bmod q
$$

Succinct Argument for vSIS Commitment (Knowledge-kRISIS)

Want to prove (c, \bar{c}) and $\mathbf{x} \in \mathcal{R}^{m}$ satisfies:

$$
c=p_{\mathbf{x}}(v) \quad \bar{c}=p_{\mathbf{x}}\left(v^{-1}\right) \quad\|\mathbf{x}\| \approx 0
$$

Public parameters: kRISIS instance $\left(\mathbf{A}, \mathbf{T}, \mathrm{v},\left(\mathrm{u}_{i}\right)_{i=1}^{m}\right)$ where

Prover: Output $\mathbf{u}=\sum_{i \in[m]} \mathbf{u}_{i} \cdot x_{i}$.

Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
Prover clearly runs in $\tilde{O}_{\lambda}(m)$ time.
Verifier clearly runs in $\tilde{O}_{\lambda}(1)$ time.

Succinct Argument for vSIS Commitment (Knowledge-kRISIS)

Want to prove (c, \bar{c}) and $\mathbf{x} \in \mathcal{R}^{m}$ satisfies:

$$
c=p_{\mathbf{x}}(v) \quad \bar{c}=p_{\mathbf{x}}\left(v^{-1}\right) \quad\|\mathbf{x}\| \approx 0
$$

\dagger Public parameters: kRISIS instance $\left(\mathbf{A}, \mathbf{T}, v,\left(\mathbf{u}_{i}\right)_{i=1}^{m}\right)$ where

$$
\mathbf{u}_{i} \in \mathbf{A}^{-1}\left(\mathbf{T} \cdot\binom{v^{i}}{v^{-i}}\right)
$$

\dagger Prover: Output $\mathbf{u}=\sum_{i \in[m]} \mathbf{u}_{i} \cdot x_{i}$.
\dagger Verifier: Check that $\mathbf{A} \cdot \mathbf{u}=\mathbf{T} \cdot\binom{c}{c} \bmod q$ and $\|\mathbf{u}\| \approx 0$.
Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
Prover clearly runs in $\tilde{O}_{\lambda}(m)$ time.
Verifier clearly runs in $\tilde{O}_{\lambda}(1)$ time.

Succinct Argument for vSIS Commitment (Knowledge-kRISIS)

Want to prove (c, \bar{c}) and $\mathbf{x} \in \mathcal{R}^{m}$ satisfies:

$$
c=p_{\mathbf{x}}(v) \quad \bar{c}=p_{\mathbf{x}}\left(v^{-1}\right) \quad\|\mathbf{x}\| \approx 0
$$

\dagger Public parameters: kRISIS instance $\left(\mathbf{A}, \mathbf{T}, v,\left(\mathbf{u}_{i}\right)_{i=1}^{m}\right)$ where

$$
\mathbf{u}_{i} \in \mathbf{A}^{-1}\left(\mathbf{T} \cdot\binom{v^{i}}{v^{-i}}\right) .
$$

\dagger Prover: Output $\mathbf{u}=\sum_{i \in[m]} \mathbf{u}_{i} \cdot x_{i}$.
\dagger Verifier: Check that $\mathbf{A} \cdot \mathbf{u}=\mathbf{T} \cdot\binom{c}{\bar{c}} \bmod q$ and $\|\mathbf{u}\| \approx 0$.
\dagger Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
\dagger Prover clearly runs in $\tilde{O}_{\lambda}(m)$ time.
\dagger Verifier clearly runs in $\tilde{O}_{\lambda}(1)$ time.

Succinct Argument for vSIS Commitment (Knowledge-kRISIS)

Want to prove \hat{c} and $\mathbf{x} \in \mathcal{R}^{2 m+1}$ satisfies:

$$
x_{0}=0 \quad \hat{c}=\hat{p}_{\mathbf{x}}(v) \quad\|\mathbf{x}\| \approx 0
$$

Public parameters: kRISIS instance $\left(\mathbf{A}, \mathbf{t}, \mathrm{v},\left(\mathbf{u}_{i}\right)_{i \in \pm[m]}\right)$ where $\mathbf{u}_{i} \in \mathbf{A}^{-1}\left(\mathbf{t} \cdot v^{i}\right)$.

Prover: Output $\mathbf{u}=\sum_{i \in \pm[m]} \mathbf{u}_{i} \cdot x_{i}$
Verifier: Check that $\mathbf{A} \cdot \mathbf{u}=\mathbf{t} \cdot \hat{\mathbf{c}} \bmod q$ and $\|\mathbf{u}\| \approx 0$.
Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
Prover clearly runs in $\tilde{O}_{\lambda}(m)$ time.
Verifier clearly runs in $\tilde{O}_{\lambda}(1)$ time.

Succinct Argument for vSIS Commitment (Knowledge-kRISIS)

Want to prove \hat{c} and $\mathbf{x} \in \mathcal{R}^{2 m+1}$ satisfies:

$$
x_{0}=0 \quad \hat{c}=\hat{p}_{\mathbf{x}}(v) \quad\|\mathbf{x}\| \approx 0
$$

\dagger Public parameters: kRISIS instance $\left(\mathbf{A}, \mathbf{t}, v,\left(\mathbf{u}_{i}\right)_{i \in \pm[m]}\right)$ where

$$
\mathbf{u}_{i} \in \mathbf{A}^{-1}\left(\mathbf{t} \cdot v^{i}\right) .
$$

\dagger Prover: Output $\mathbf{u}=\sum_{i \in \pm[m]} \mathbf{u}_{i} \cdot x_{i}$.
\dagger Verifier: Check that $\mathbf{A} \cdot \mathbf{u}=\mathbf{t} \cdot \hat{c} \bmod q$ and $\|\mathbf{u}\| \approx 0$.
Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
Prover clearly runs in $\tilde{O}_{\lambda}(m)$ time.
Verifier clearly runs in $\tilde{O}_{\lambda}(1)$ time.

Succinct Argument for vSIS Commitment (Knowledge-kRISIS)

Want to prove \hat{c} and $\mathbf{x} \in \mathcal{R}^{2 m+1}$ satisfies:

$$
x_{0}=0 \quad \hat{c}=\hat{p}_{\mathbf{x}}(v) \quad\|\mathbf{x}\| \approx 0
$$

\dagger Public parameters: kRISIS instance $\left(\mathbf{A}, \mathbf{t}, v,\left(\mathbf{u}_{i}\right)_{i \in \pm[m]}\right)$ where

$$
\mathbf{u}_{i} \in \mathbf{A}^{-1}\left(\mathbf{t} \cdot v^{i}\right) .
$$

\dagger Prover: Output $\mathbf{u}=\sum_{i \in \pm[m]} \mathbf{u}_{i} \cdot x_{i}$.
\dagger Verifier: Check that $\mathbf{A} \cdot \mathbf{u}=\mathbf{t} \cdot \hat{c} \bmod q$ and $\|\mathbf{u}\| \approx 0$.
\dagger Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
\dagger Prover clearly runs in $\tilde{O}_{\lambda}(m)$ time.
\dagger Verifier clearly runs in $\tilde{O}_{\lambda}(1)$ time.

Crash Course on (Lattice-based) Bulletproofs

Goal: Prove SIS relation with $O(\log m)$ communication:

$$
\left\{(\mathbf{A}, \mathbf{y}) \in \mathcal{R}_{q}^{n \times m} \times \mathcal{R}_{q}^{n}: \exists \mathbf{x} \in \mathcal{R}^{m}, \mathbf{A} \cdot \mathbf{x}=\mathbf{y} \bmod q \wedge\|\mathbf{x}\| \approx 0\right\}
$$

where $m=2^{\mu}, \mathbf{A}=\left(\mathbf{A}_{1} \mid \mathbf{A}_{2}\right), \mathbf{x}=\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}\right)$.

Crash Course on (Lattice-based) Bulletproofs

Goal: Prove SIS relation with $O(\log m)$ communication:

$$
\left\{(\mathbf{A}, \mathbf{y}) \in \mathcal{R}_{q}^{n \times m} \times \mathcal{R}_{q}^{n}: \exists \mathbf{x} \in \mathcal{R}^{m}, \mathbf{A} \cdot \mathbf{x}=\mathbf{y} \bmod q \wedge\|\mathbf{x}\| \approx 0\right\}
$$

where $m=2^{\mu}, \mathbf{A}=\left(\mathbf{A}_{1} \mid \mathbf{A}_{2}\right), \mathbf{x}=\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}\right)$.

$$
\begin{aligned}
& \underline{\text { Prover } \mathcal{P}((\mathbf{A}, \mathbf{y}), \mathbf{x})} \\
& \mathbf{y}_{12}:=\mathbf{A}_{1} \cdot \mathbf{x}_{2} \\
& \mathbf{y}_{21}:=\mathbf{A}_{2} \cdot \mathbf{x}_{1} \\
& \hat{\mathbf{x}}_{c}:=c \cdot \mathbf{x}_{1}+\mathbf{x}_{2} \\
& \longleftarrow \\
& \hat{\mathbf{y}}_{c}:=\mathbf{y}_{12}+\mathbf{y} \cdot c+\mathbf{y}_{21} \cdot c^{2} \bmod q \\
& \text { return } \underbrace{\left\{\begin{array}{l}
\hat{\mathbf{A}}_{c} \cdot \hat{\mathbf{x}}_{c}=\hat{\mathbf{y}}_{c} \\
\left\|\hat{\mathbf{x}}_{c}\right\| \approx 0
\end{array}\right.} \\
& \text { Just another SIS relation but with only } m / 2 \text { columns } \Longrightarrow \text { Recursion }
\end{aligned}
$$

Crash Course on (Lattice-based) Bulletproofs

After μ-fold recursive composition:

$$
\text { Prover } \mathcal{P}((\mathbf{A}, \mathbf{y}), \mathbf{x})
$$

$\xrightarrow{\mathbf{y}_{12}^{(1)}, \mathbf{y}_{21}^{(1)}}$
\qquad

$$
\left(\hat{\mathbf{A}}_{c_{1}}, \hat{\mathbf{y}}_{c_{1}}\right):=\ldots
$$

$\mathbf{y}_{12}^{(\mu)}, \mathbf{y}_{21}^{(\mu)}$

$\left(\hat{\mathbf{A}}_{c_{1}, \ldots, c_{\mu}}, \hat{\mathbf{y}}_{c_{1}, \ldots, c_{\mu}}\right):=\ldots$

Crash Course on (Lattice-based) Bulletproofs

After μ-fold recursive composition:
Prover $\mathcal{P}((\mathbf{A}, \mathbf{y}), \mathbf{x})$

$$
\text { Verifier } \mathcal{V}(\mathbf{A}, \mathbf{y})
$$

$\left(\hat{\mathbf{A}}_{c_{1}}, \hat{\mathbf{y}}_{c_{1}}\right):=\ldots$
$\mathbf{y}_{12}^{(\mu)}, \mathbf{y}_{21}^{(\mu)}$

$$
\left(\hat{\mathbf{A}}_{c_{1}, \ldots, c_{\mu}}, \hat{\mathbf{y}}_{c_{1}, \ldots, c_{\mu}}\right):=\ldots
$$

$$
\text { return }\left\{\begin{array}{l}
\hat{\mathbf{A}}_{c_{1}, \ldots, c_{\mu}} \cdot \hat{\mathbf{x}}_{c_{1}, \ldots, c_{\mu}}=\hat{\mathbf{y}}_{c_{1}, \ldots, c_{\mu}} \\
\left\|\hat{\mathbf{x}}_{c_{1}, \ldots, c_{\mu}}\right\| \approx 0
\end{array}\right.
$$

Main verifier bottleneck: Computing $\hat{\mathbf{A}}_{c_{1}, \ldots, c_{\mu}}$. In general, this requires $\Omega_{\lambda}(m)$ time.

Structured Folding for vSIS

Core Idea

For \mathbf{A} corresponding to vSIS instance, computing $\hat{\mathbf{A}}_{c_{1}, \ldots, c_{\mu}}$ takes $\tilde{O}_{\lambda}(\log m)=\tilde{O}_{\lambda}(1)$ time .

Example for $\mu=3$

Structured Folding for vSIS

Core Idea

For \mathbf{A} corresponding to vSIS instance, computing $\hat{\mathbf{A}}_{c_{1}, \ldots, c_{\mu}}$ takes $\tilde{O}_{\lambda}(\log m)=\tilde{O}_{\lambda}(1)$ time.

Example for $\mu=3$

$$
\left.\begin{array}{rl}
\mathbf{A} & =\left(\begin{array}{llllll}
v & v^{2} & v^{3} & v^{4} & v^{5} & v^{6}
\end{array} v^{7}\right. \\
v^{8}
\end{array}\right) .
$$

Succinct Argument for vSIS Commitment (Folding)

Want to prove (c, \bar{c}) and $\mathbf{x} \in \mathcal{R}^{m}$ satisfies:

$$
c=p_{\mathbf{x}}(v) \quad \bar{c}=p_{\mathbf{x}}\left(v^{-1}\right) \quad\|\mathbf{x}\| \approx 0
$$

Equivalent to proving $\mathrm{A} \cdot \mathrm{x}=\mathrm{y} \bmod \mathrm{q}$ and $\|\mathrm{x}\| \approx 0$ where

After folding:

Knowledge-soundness follows from existing Bulletproofs analysis.
Prover runs in $\tilde{O}_{\lambda}(m)$ time.
Verifier runs in $\tilde{O}_{\lambda}(1)$ time (since $\hat{\mathbf{A}}_{C}$ consists of product of $O(\log m)$ sums $)$.

Succinct Argument for vSIS Commitment (Folding)

Want to prove (c, \bar{c}) and $\mathbf{x} \in \mathcal{R}^{m}$ satisfies:

$$
c=p_{\mathbf{x}}(v) \quad \bar{c}=p_{\mathbf{x}}\left(v^{-1}\right) \quad\|\mathbf{x}\| \approx 0
$$

\dagger Equivalent to proving $\mathbf{A} \cdot \mathbf{x}=\mathbf{y} \bmod q$ and $\|\mathbf{x}\| \approx 0$ where

$$
\mathbf{A}=\left(\begin{array}{cccc}
v & v^{2} & \ldots & v^{m} \\
v^{-1} & v^{-2} & \ldots & v^{-m}
\end{array}\right) \quad \mathbf{y}=\binom{c}{\bar{c}}
$$

After folding:

Knowledge-soundness follows from existing Bulletproofs analysis.
Prover runs in $\tilde{O}_{\lambda}(m)$ time.
Verifier runs in $\tilde{O}_{\lambda}(1)$ time (since \hat{A}_{a}
consists of product of $O(\log m)$ sums).

Succinct Argument for vSIS Commitment (Folding)

Want to prove (c, \bar{c}) and $\mathbf{x} \in \mathcal{R}^{m}$ satisfies:

$$
c=p_{\mathbf{x}}(v) \quad \bar{c}=p_{\mathbf{x}}\left(v^{-1}\right) \quad\|\mathbf{x}\| \approx 0
$$

\dagger Equivalent to proving $\mathbf{A} \cdot \mathbf{x}=\mathbf{y} \bmod q$ and $\|\mathbf{x}\| \approx 0$ where

$$
\mathbf{A}=\left(\begin{array}{cccc}
v & v^{2} & \ldots & v^{m} \\
v^{-1} & v^{-2} & \ldots & v^{-m}
\end{array}\right) \quad \mathbf{y}=\binom{c}{\bar{c}}
$$

\dagger After folding:

$$
\hat{\mathbf{A}}_{c_{1}, \ldots, c_{\mu}}=\binom{v \cdot \prod_{i=1}^{\mu}\left(1+v^{2^{\mu-i}} \cdot c_{i}\right)}{v^{-1} \cdot \prod_{i=1}^{\mu}\left(1+v^{-2^{\mu-i}} \cdot c_{i}\right)}
$$

Knowledge-soundness follows from existing Bulletproofs analysis.
Prover runs in $\tilde{O}_{\lambda}(m)$ time.
Verifier runs in $\tilde{O}_{\lambda}(1)$ time (since $\hat{A}_{a_{1}}$
consists of product of $O(\log m)$ sums $)$.

Succinct Argument for vSIS Commitment (Folding)

Want to prove (c, \bar{c}) and $\mathbf{x} \in \mathcal{R}^{m}$ satisfies:

$$
c=p_{\mathbf{x}}(v) \quad \bar{c}=p_{\mathbf{x}}\left(v^{-1}\right) \quad\|\mathbf{x}\| \approx 0
$$

\dagger Equivalent to proving $\mathbf{A} \cdot \mathbf{x}=\mathbf{y} \bmod q$ and $\|\mathbf{x}\| \approx 0$ where

$$
\mathbf{A}=\left(\begin{array}{cccc}
v & v^{2} & \ldots & v^{m} \\
v^{-1} & v^{-2} & \ldots & v^{-m}
\end{array}\right) \quad \mathbf{y}=\binom{c}{\bar{c}}
$$

\dagger After folding:

$$
\hat{\mathbf{A}}_{c_{1}, \ldots, c_{\mu}}=\binom{v \cdot \prod_{i=1}^{\mu}\left(1+v^{2^{\mu-i}} \cdot c_{i}\right)}{v^{-1} \cdot \prod_{i=1}^{\mu}\left(1+v^{-2^{\mu-i}} \cdot c_{i}\right)}
$$

\dagger Knowledge-soundness follows from existing Bulletproofs analysis.
\dagger Prover runs in $\tilde{O}_{\lambda}(m)$ time.
\dagger Verifier runs in $\tilde{O}_{\lambda}(1)$ time (since $\hat{\mathbf{A}}_{c_{1}, \ldots, c_{\mu}}$ consists of product of $O(\log m)$ sums).

Succinct Argument for vSIS Commitment (Folding)

Want to prove \hat{c} and $\mathrm{x} \in \mathcal{R}^{2 m+1}$ satisfies:

$$
x_{0}=0 \quad \hat{c}=\hat{p}_{\mathbf{x}}(v) \quad\|\mathbf{x}\| \approx 0
$$

Equivalent to proving $\mathrm{A} \cdot \mathrm{x}=\mathrm{y} \bmod \mathrm{q}$ and $\|\mathrm{x}\| \approx 0$ where

After folding:

Knowledge-soundness follows from existing Bulletproofs analysis.
Prover runs in $\tilde{O}_{\lambda}(m)$ time.
Verifier runs in $\tilde{O}_{\lambda}(1)$ time (since $\hat{\mathbf{A}}_{c_{0}, c_{1}, \ldots, c_{\mu}}$ consists of product of O (log m) sums).

Succinct Argument for vSIS Commitment (Folding)

Want to prove \hat{c} and $\mathrm{x} \in \mathcal{R}^{2 m+1}$ satisfies:

$$
x_{0}=0 \quad \hat{c}=\hat{p}_{\mathbf{x}}(v) \quad\|\mathbf{x}\| \approx 0
$$

\dagger Equivalent to proving $\mathbf{A} \cdot \mathbf{x}=\mathbf{y} \bmod q$ and $\|\mathbf{x}\| \approx 0$ where

$$
\mathbf{A}=\left(\begin{array}{llllll}
v^{-m} & \ldots & v^{-1} & v & \ldots & v^{m}
\end{array}\right) \quad \mathbf{y}=\hat{c}
$$

After folding:

Knowledge-soundness follows from existing Bulletproofs analysis.
Prover runs in $\tilde{O}_{\lambda}(m)$ time.
Verifier runs in $\tilde{O}_{\lambda}(1)$ time (since $\hat{A}_{c_{0}, c_{1}}$

Succinct Argument for vSIS Commitment (Folding)

Want to prove \hat{c} and $\mathbf{x} \in \mathcal{R}^{2 m+1}$ satisfies:

$$
x_{0}=0 \quad \hat{c}=\hat{p}_{\mathbf{x}}(v) \quad\|\mathbf{x}\| \approx 0
$$

\dagger Equivalent to proving $\mathbf{A} \cdot \mathbf{x}=\mathbf{y} \bmod q$ and $\|\mathbf{x}\| \approx 0$ where

$$
\mathbf{A}=\left(\begin{array}{llllll}
v^{-m} & \ldots & v^{-1} & v & \ldots & v^{m}
\end{array}\right) \quad \mathbf{y}=\hat{c}
$$

\dagger After folding:

$$
\hat{\mathbf{A}}_{c_{0}, c_{1}, \ldots, c_{\mu}}=v \cdot \prod_{i=1}^{\mu}\left(1+v^{2^{\mu-i}} \cdot c_{i}\right) \cdot\left(v^{-m-1}+c_{0}\right)
$$

Knowledge-soundness follows from existing Bulletproofs analysis.
Prover runs in $\tilde{O}_{\lambda}(m)$ time.
Verifier runs in $\tilde{O}_{\lambda}(1)$ time (since $\hat{A}_{c_{0}, c_{1}}$

Succinct Argument for vSIS Commitment (Folding)

Want to prove \hat{c} and $\mathbf{x} \in \mathcal{R}^{2 m+1}$ satisfies:

$$
x_{0}=0 \quad \hat{c}=\hat{p}_{\mathbf{x}}(v) \quad\|\mathbf{x}\| \approx 0
$$

\dagger Equivalent to proving $\mathbf{A} \cdot \mathbf{x}=\mathbf{y} \bmod q$ and $\|\mathbf{x}\| \approx 0$ where

$$
\mathbf{A}=\left(\begin{array}{llllll}
v^{-m} & \ldots & v^{-1} & v & \ldots & v^{m}
\end{array}\right) \quad \mathbf{y}=\hat{c}
$$

\dagger After folding:

$$
\hat{\mathbf{A}}_{c_{0}, c_{1}, \ldots, c_{\mu}}=v \cdot \prod_{i=1}^{\mu}\left(1+v^{2^{\mu-i}} \cdot c_{i}\right) \cdot\left(v^{-m-1}+c_{0}\right)
$$

\dagger Knowledge-soundness follows from existing Bulletproofs analysis.
\dagger Prover runs in $\tilde{O}_{\lambda}(m)$ time.
\dagger Verifier runs in $\tilde{O}_{\lambda}(1)$ time (since $\hat{\mathbf{A}}_{c_{0}, c_{1}, \ldots, c_{\mu}}$ consists of product of $O(\log m)$ sums).

Two NP-Complete Examples

1. Subset Sum
2. Rank-1 Constraint Satisfiability (R1CS)

Subset Sum

$$
\left\{(\mathbf{M}, \mathbf{y}): \exists \mathbf{x} \in\{0,1\}^{m}, \mathbf{M} \cdot \mathbf{x}=\mathbf{y}\right\}
$$

\dagger Close connection to SIS (modular reduction, binariness \rightarrow bounded-norm).
\dagger "Almost linear", i.e. $\mathbf{M} \cdot \mathbf{x}=\mathbf{y}$, while $\left(\mathbf{x} \in\{0,1\}^{m}\right) \Longleftrightarrow((\mathbf{x}-\mathbf{1}) \circ \mathbf{x}=\mathbf{0})$.

Proving M $\mathbf{x}=\mathbf{y}$ and \mathbf{x} Binary (High Level Idea)

\dagger Verifier preprocesses (\mathbf{M}, \mathbf{y}) by computing their vSIS commitments.
Prover vSIS-commits to the witness x and some auxiliary witness x^{\prime}
Using the commitments of $\mathbf{M}, \mathbf{y}, \mathbf{x}, \mathbf{x}^{\prime}$, the verifier homomorphically derive vSIS commitments of polynomials where the constant terms encode

Prover proves that these committed polynomials have no constant terms, i.e.

Proving M $\mathbf{x}=\mathbf{y}$ and \mathbf{x} Binary (High Level Idea)

\dagger Verifier preprocesses (\mathbf{M}, \mathbf{y}) by computing their vSIS commitments.
\dagger Prover vSIS-commits to the witness \mathbf{x} and some auxiliary witness \mathbf{x}^{\prime}.
Using the commitments of $\mathbf{M}, \mathbf{y}, \mathbf{x}, \mathbf{x}^{\prime}$, the verifier homomorphically derive vSIS commitments of polynomials where the constant terms encode

Prover proves that these committed polynomials have no constant terms, i.e.

and
$(x-1) \circ x=0$

Proving M $\mathbf{x}=\mathbf{y}$ and \mathbf{x} Binary (High Level Idea)

\dagger Verifier preprocesses (\mathbf{M}, \mathbf{y}) by computing their vSIS commitments.
\dagger Prover vSIS-commits to the witness \mathbf{x} and some auxiliary witness \mathbf{x}^{\prime}.
\dagger Using the commitments of $\mathbf{M}, \mathbf{y}, \mathbf{x}, \mathbf{x}^{\prime}$, the verifier homomorphically derive vSIS commitments of polynomials where the constant terms encode

$$
\mathbf{M} \cdot \mathbf{x}-\mathbf{y} \quad \text { and } \quad(\mathbf{x}-\mathbf{1}) \circ \mathbf{x} .
$$

Prover proves that these committed polynomials have no constant terms, i.e.

Proving M $\mathbf{x}=\mathbf{y}$ and \mathbf{x} Binary (High Level Idea)

\dagger Verifier preprocesses (\mathbf{M}, \mathbf{y}) by computing their vSIS commitments.
\dagger Prover vSIS-commits to the witness \mathbf{x} and some auxiliary witness \mathbf{x}^{\prime}.
\dagger Using the commitments of $\mathbf{M}, \mathbf{y}, \mathbf{x}, \mathbf{x}^{\prime}$, the verifier homomorphically derive vSIS commitments of polynomials where the constant terms encode

$$
\mathbf{M} \cdot \mathbf{x}-\mathbf{y} \quad \text { and } \quad(\mathbf{x}-\mathbf{1}) \circ \mathbf{x} .
$$

\dagger Prover proves that these committed polynomials have no constant terms, i.e.

$$
\mathbf{M} \cdot \mathbf{x}-\mathbf{y}=\mathbf{0} \quad \text { and } \quad(\mathbf{x}-\mathbf{1}) \circ \mathbf{x}=\mathbf{0} .
$$

Proving $\mathbf{M} \cdot \mathbf{x}=\mathbf{y}$ and \mathbf{x} Binary

Let $\mathbf{h}, \mathbf{k}, \mathrm{I}$ be random vectors with $0 \ll\|\mathbf{h}\|,\|\mathbf{k}\| \ll\|\mathbf{I}\| \ll q$.
Prover commits to and proves well-formedness of the following

Witness and Auxiliaries	\mathbf{x}	$\mathbf{x}^{\prime}=\mathbf{k} \circ \mathbf{x}$
Commitment	$\left(p_{\mathbf{x}}(v), p_{\mathbf{x}}\left(v^{-1}\right)\right)$	$p_{\mathbf{x}^{\prime}}\left(v^{-1}\right)$

Prover proves that the following are commitments to short Laurent polynomials without constant term:

Commitment
$\begin{array}{lll}\text { 1. } & p_{\mathbf{h}^{\top} \cdot \mathbf{M}}\left(v^{-1}\right) \cdot p_{\mathbf{x}}(v)-\mathbf{h}^{\top} \cdot \mathbf{y} & \mathbf{h}^{\top} \cdot(\mathbf{M} \cdot \mathbf{x}-\mathbf{y})=0 \xrightarrow{\text { SIS }} \mathbf{M} \cdot \mathbf{x}=\mathbf{y} \\ \text { 2. } & p_{\mathbf{x}^{\prime}}\left(v^{-1}\right) \cdot p_{1}(v)-p_{1 \circ \mathbf{k}}\left(v^{-1}\right) \cdot p_{\mathbf{x}}(v) & \mathbf{I}^{\top} \cdot\left(\mathbf{x}^{\prime}-\mathbf{k} \circ \mathbf{x}\right)=0 \xrightarrow{\text { SIS }} \mathbf{x}^{\prime}=\mathbf{k} \circ \mathbf{x} \\ \text { 3. } & \left(p_{\mathbf{x}^{\prime}}\left(v^{-1}\right)-p_{\mathbf{k}}\left(v^{-1}\right)\right) \cdot p_{\mathbf{x}}(v) & \underbrace{\mathbf{k}^{\top} \cdot((\mathbf{x}-\mathbf{1}) \circ \mathbf{x})=0}_{2 . \Longrightarrow} \xlongequal{\text { SIS }}(\mathbf{x}-\mathbf{1}) \circ \mathbf{x}=\mathbf{0}\end{array}$
Sent by prover

Constant term and implication
\rightarrow

Proving $\mathbf{M} \cdot \mathbf{x}=\mathbf{y}$ and \mathbf{x} Binary

Let \mathbf{h}, \mathbf{k}, \mathbf{I} be random vectors with $0 \ll\|\mathbf{h}\|,\|\mathbf{k}\| \ll\|\mathbf{I}\| \ll \mathbf{q}$.
Prover commits to and proves well-formedness of the following

Witness and Auxiliaries	\mathbf{x}	$\mathbf{x}^{\prime}=\mathbf{k} \circ \mathbf{x}$
Commitment	$\left(p_{\mathbf{x}}(v), p_{\mathbf{x}}\left(v^{-1}\right)\right)$	$p_{\mathbf{x}^{\prime}}\left(v^{-1}\right)$

Prover proves that the following are commitments to short Laurent polynomials without constant term:

Commitment
$\begin{array}{lll}\text { 1. } & p_{\mathbf{h}^{\top} \cdot \mathbf{M}}\left(v^{-1}\right) \cdot p_{\mathbf{x}}(v)-\mathbf{h}^{\top} \cdot \mathbf{y} & \mathbf{h}^{\top} \cdot(\mathbf{M} \cdot \mathbf{x}-\mathbf{y})=0 \xlongequal{\text { SIS }} \mathbf{M} \cdot \mathbf{x}=\mathbf{y} \\ \text { 2. } & p_{\mathbf{x}^{\prime}}\left(v^{-1}\right) \cdot p_{1}(v)-p_{1 \circ k}\left(v^{-1}\right) \cdot p_{\mathbf{x}}(v) & \mathbf{I}^{\top} \cdot\left(\mathbf{x}^{\prime}-\mathbf{k} \circ \mathbf{x}\right)=0 \xrightarrow{\text { SIS }} \mathbf{x}^{\prime}=\mathbf{k} \circ \mathbf{x} \\ \text { 3. } & \left(p_{\mathbf{x}^{\prime}}\left(v^{-1}\right)-p_{\mathbf{k}}\left(v^{-1}\right)\right) \cdot p_{\mathbf{x}}(v) & \underbrace{\mathbf{k}^{\top} \cdot((\mathbf{x}-\mathbf{1}) \circ \mathbf{x})=0}_{2 . \Longrightarrow} \xlongequal{\text { SIS }}(\mathbf{x}-\mathbf{1}) \circ \mathbf{x}=\mathbf{0}\end{array}$
Constant term and implication

Preprocessed Sent by prover

Rank-1 Constraint Satisfiability (R1CS)

$$
\{(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{y}): \exists \mathbf{x},(\mathbf{A} \cdot \mathbf{x}) \circ(\mathbf{B} \cdot \mathbf{x})=(\mathbf{C} \cdot \mathbf{x}) \wedge \mathbf{D} \cdot \mathbf{x}=\mathbf{y}\}
$$

\dagger The boundary constraint

$$
\mathbf{D} \cdot \mathbf{x}=\mathbf{y}
$$

is easy to deal with. In next slide, we ignore it and focus on

$$
(\mathbf{A} \cdot \mathbf{x}) \circ(\mathbf{B} \cdot \mathbf{x})=(\mathbf{C} \cdot \mathbf{x})
$$

Proving $(\mathbf{A} \cdot \mathbf{x}) \circ(\mathbf{B} \cdot \mathbf{x})=(\mathbf{C} \cdot \mathbf{x})$

Let \mathbf{h}, \mathbf{I} be random vectors with $0 \ll\|\mathbf{h}\| \ll\|\mathbf{I}\| \ll \mathbf{q}$.
Prover commits to and proves well-formedness of the following

Witness and Auxiliaries	\mathbf{x}	$\mathbf{a}=\mathbf{A} \cdot \mathbf{x}$	$\mathbf{b}=\mathbf{B} \cdot \mathbf{x}$	$\mathbf{c}=\mathbf{C} \cdot \mathbf{x}$	$\mathbf{a}^{\prime}=\mathbf{h} \circ \mathbf{a}$
Commitment	$\left(p_{\mathbf{x}}(v), p_{\mathbf{x}}\left(v^{-1}\right)\right)$	$p_{\mathbf{a}}(v)$	$p_{\mathbf{b}}(v)$	$p_{\mathbf{c}}(v)$	$p_{\mathbf{a}^{\prime}}\left(v^{-1}\right)$

Prover proves that the following are commitments to short Laurent polynomials without constant term:

Commitment

1. $\quad p_{\mathbf{h}^{\top} \cdot \mathbf{A}}\left(v^{-1}\right) \cdot p_{\mathbf{x}}(v)-p_{\mathbf{h}}\left(v^{-1}\right) \cdot p_{\mathbf{a}}(v) \quad \mathbf{h}^{\top} \cdot(\mathbf{A} \cdot \mathbf{x}-\mathbf{a})=0 \stackrel{\text { SIS }}{\Longrightarrow} \mathbf{A} \cdot \mathbf{x}=\mathbf{a}$
2. $\quad p_{\mathrm{h}^{\top} \cdot \mathbf{B}}\left(v^{-1}\right) \cdot p_{\mathbf{x}}(v)-p_{\mathrm{h}}\left(v^{-1}\right) \cdot p_{\mathrm{b}}(v)$
$\mathbf{h}^{\top} \cdot(\mathbf{B} \cdot \mathbf{x}-\mathbf{b})=0 \stackrel{\text { SIS }}{\Longrightarrow}$
$\mathbf{B} \cdot \mathbf{x}=\mathbf{b}$
3. $\quad p_{\mathbf{h}^{\top} \cdot \mathbf{c}}\left(v^{-1}\right) \cdot p_{\mathrm{x}}(v)-p_{\mathrm{h}}\left(v^{-1}\right) \cdot p_{\mathrm{c}}(v)$
$\mathbf{h}^{\top} \cdot(\mathbf{C} \cdot \mathbf{x}-\mathbf{c})=0 \xrightarrow{\text { SIS }}$
$\mathbf{C} \cdot \mathbf{x}=\mathbf{c}$
4. $\quad p_{\mathbf{a}^{\prime}}\left(v^{-1}\right) \cdot p_{\mathrm{l}}(v)-p_{\mathrm{Ioh}}\left(v^{-1}\right) \cdot p_{\mathrm{a}}(v)$
$\mathbf{I}^{\top} \cdot\left(\mathbf{a}^{\prime}-\mathbf{h} \circ \mathbf{a}\right)=0 \stackrel{\text { SIS }}{\Longrightarrow} \mathbf{a}^{\prime}=\mathbf{h} \circ \mathbf{a}$
5. $\quad p_{\mathrm{a}^{\prime}}\left(v^{-1}\right) \cdot p_{\mathrm{b}}(v)-p_{\mathrm{h}}\left(v^{-1}\right) \cdot p_{\mathrm{c}}(v)$

$\operatorname{Proving}(\mathbf{A} \cdot \mathbf{x}) \circ(\mathbf{B} \cdot \mathbf{x})=(\mathbf{C} \cdot \mathbf{x})$

Let \mathbf{h}, I be random vectors with $0 \ll\|\mathbf{h}\| \ll\|\mathbf{I}\| \ll \mathbf{q}$.
Prover commits to and proves well-formedness of the following

Witness and Auxiliaries	\mathbf{x}	$\mathbf{a}=\mathbf{A} \cdot \mathbf{x}$	$\mathbf{b}=\mathbf{B} \cdot \mathbf{x}$	$\mathbf{c}=\mathbf{C} \cdot \mathbf{x}$	$\mathbf{a}^{\prime}=\mathbf{h} \circ \mathbf{a}$
Commitment	$\left(p_{\mathbf{x}}(v), p_{\mathbf{x}}\left(v^{-1}\right)\right)$	$p_{\mathbf{a}}(v)$	$p_{\mathbf{b}}(v)$	$p_{\mathbf{c}}(v)$	$p_{\mathbf{a}^{\prime}}\left(v^{-1}\right)$

Prover proves that the following are commitments to short Laurent polynomials without constant term:

Commitment

1. $\quad p_{h^{\top}} \cdot \mathrm{A}\left(v^{-1}\right) \cdot p_{\mathrm{x}}(v)-p_{\mathrm{h}}\left(v^{-1}\right) \cdot p_{\mathrm{a}}(v)$
2. $\quad p_{h^{\top}} \cdot \mathrm{B}\left(v^{-1}\right) \cdot p_{\mathrm{x}}(v)-p_{\mathrm{h}}\left(v^{-1}\right) \cdot p_{\mathrm{b}}(v)$
3. $\quad p_{\mathrm{h}^{\top}} \cdot \mathrm{c}\left(v^{-1}\right) \cdot p_{\mathrm{x}}(v)-p_{\mathrm{h}}\left(v^{-1}\right) \cdot p_{\mathrm{c}}(v)$
4. $p_{\mathbf{a}^{\prime}}\left(v^{-1}\right) \cdot p_{1}(v)-p_{\mathrm{loh}}\left(v^{-1}\right) \cdot p_{\mathrm{a}}(v)$
5. $\quad p_{\mathrm{a}^{\prime}}\left(v^{-1}\right) \cdot p_{\mathrm{b}}(v)-p_{\mathrm{h}}\left(v^{-1}\right) \cdot p_{\mathrm{c}}(v)$

Constant term and implication
$\mathbf{h}^{\top} \cdot(\mathbf{A} \cdot \mathbf{x}-\mathbf{a})=0 \xlongequal{\text { SIS }} \mathbf{A} \cdot \mathbf{x}=\mathbf{a}$
$\mathbf{h}^{\top} \cdot(\mathbf{B} \cdot \mathbf{x}-\mathbf{b})=0 \stackrel{\text { SIS }}{\Longrightarrow} \mathbf{B} \cdot \mathbf{x}=\mathbf{b}$
$\mathbf{h}^{\top} \cdot(\mathbf{C} \cdot \mathbf{x}-\mathbf{c})=0 \stackrel{\text { SIS }}{\Longrightarrow} \mathbf{C} \cdot \mathbf{x}=\mathbf{c}$
$\mathbf{I}^{\top} \cdot\left(\mathbf{a}^{\prime}-\mathbf{h} \circ \mathbf{a}\right)=0 \stackrel{\text { SIS }}{\Longrightarrow} \mathbf{a}^{\prime}=\mathbf{h} \circ \mathbf{a}$
$\underbrace{\mathbf{h}^{\top} \cdot(\mathbf{a} \circ \mathbf{b}-\mathbf{c})=0}_{4 . \Longrightarrow} \stackrel{\text { SIS }}{\Longrightarrow} \mathbf{a} \circ \mathbf{b}=\mathbf{c}$

Conclusion

\dagger Vanishing Short Integer Solution (vSIS) assumption and commitments
\dagger Succinct arguments for vSIS commitment openings
\dagger Succinct arguments for NP:
\ddagger Lattice-based
\ddagger Quasi-linear-time prover
\ddagger Public verifier
\ddagger Polylogarithmic-time verifier after preprocessing
\ddagger Transparent setup (RO instantiation)

Russell W. F. Lai

Aalto University, Finland
russell.lai@aalto.fi
russell-lai.hk

References I

[ACK21] Thomas Attema, Ronald Cramer, and Lisa Kohl. "A Compressed Σ-Protocol Theory for Lattices". In: CRYPTO 2021, Part II. Ed. by Tal Malkin and Chris Peikert. Vol. 12826. LNCS. Virtual Event: Springer, Heidelberg, Aug. 2021, pp. 549-579. DOI: 10.1007/978-3-030-84245-1_19.
[ACLMT22] Martin R. Albrecht et al. "Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable - (Extended Abstract)". In: CRYPTO 2022, Part II. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13508. LNCS. Springer, Heidelberg, Aug. 2022, pp. 102-132. DOI: 10.1007/978-3-031-15979-4_4.
[AL21] Martin R. Albrecht and Russell W. F. Lai. "Subtractive Sets over Cyclotomic Rings - Limits of Schnorr-Like Arguments over Lattices". In: CRYPTO 2021, Part II. Ed. by Tal Malkin and Chris Peikert. Vol. 12826. LNCS. Virtual Event: Springer, Heidelberg, Aug. 2021, pp. 519-548. DOI: 10.1007/978-3-030-84245-1_18.
[BCIOP13] Nir Bitansky et al. "Succinct Non-interactive Arguments via Linear Interactive Proofs". In: TCC 2013. Ed. by Amit Sahai. Vol. 7785. LNCS. Springer, Heidelberg, Mar. 2013, pp. 315-333. DOI: 10.1007/978-3-642-36594-2_18.

References II

[BISW17] Dan Boneh et al. "Lattice-Based SNARGs and Their Application to More Efficient Obfuscation". In: EUROCRYPT 2017, Part III. Ed. by Jean-Sébastien Coron and Jesper Buus Nielsen. Vol. 10212. LNCS. Springer, Heidelberg, 2017, pp. 247-277. DoI: 10.1007/978-3-319-56617-7_9.
[BISW18] Dan Boneh et al. "Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs". In: EUROCRYPT 2018, Part III. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10822. LNCS. Springer, Heidelberg, 2018, pp. 222-255. DOI: 10. 1007/978-3-319-78372-7_8.
[BLNS20] Jonathan Bootle et al. "A Non-PCP Approach to Succinct Quantum-Safe Zero-Knowledge". In: CRYPTO 2020, Part II. Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12171. LNCS. Springer, Heidelberg, Aug. 2020, pp. 441-469. DOI: 10.1007/978-3-030-56880-1_16.
[BS22] Ward Beullens and Gregor Seiler. LaBRADOR: Compact Proofs for R1CS from Module-SIS. Cryptology ePrint Archive, Report 2022/1341.
https://eprint.iacr.org/2022/1341. 2022.

References III

[GMNO18] Rosario Gennaro et al. "Lattice-Based zk-SNARKs from Square Span Programs". In: ACM CCS 2018. Ed. by David Lie et al. ACM Press, Oct. 2018, pp. 556-573. DOI: 10.1145/3243734.3243845.

How hard is vanishing SIS?

$$
\text { kRISIS } \leq \mathrm{vSIS} \leq \text { kRISIS }^{\text {Knowledge-kRISIS }}
$$

kRISIS \leq vSIS (Solve vSIS \Longrightarrow Solve kRISIS):
\dagger Given kRISIS instance $\left(\mathbf{A}, \mathbf{T}, \mathbf{v},\left(\mathbf{u}_{\mathbf{g}}\right)_{\mathbf{g} \in \mathcal{G}}, g^{*}\right)$.
\dagger Run vSIS solver on $\left(\mathcal{G} \cup\left\{\mathbf{g}^{*}\right\}, \mathbf{v}\right)$ to obtain $\left.\mathbf{p}=\left(p_{\mathbf{g}}\right)_{\mathbf{g} \in \mathcal{G}}\right)$ such that

$$
\sum_{\mathbf{g} \in \mathcal{G}} p_{\mathbf{g}} \cdot \mathbf{g}(\mathbf{v})+p_{\mathbf{g}^{*}} \cdot \mathbf{g}^{*}(\mathbf{v})=\mathbf{0} \bmod q \quad \quad \text { and } \quad \quad\|\mathbf{p}\| \approx 0
$$

\dagger Output $\mathbf{u}^{*}=\sum_{\mathbf{g} \in \mathcal{G}} p_{\mathbf{g}} \cdot \mathbf{u}_{\mathbf{g}}$ and $s^{*}=-p_{\mathbf{g}^{*}}$.
\dagger Clearly,

$$
\mathbf{A} \cdot \mathbf{u}^{*}=\mathbf{T} \cdot \mathbf{g}^{*}(\mathbf{v}) \cdot s^{*} \bmod q \quad \text { and } \quad\|\mathbf{u}\| \approx 0
$$

How hard is vanishing SIS?

$$
\text { kRISIS } \leq \mathrm{vSIS} \leq \text { kRISIS }^{\text {Knowledge-kRISIS }}
$$

vSIS \leq kRISIS $^{\text {Knowledge-kRISIS }}$ (Assume knowledge-kRISIS. Solve kRISIS \Longrightarrow Solve vSIS):
\dagger Given vSIS instance $\left(\mathcal{G} \cup\left\{g^{*}\right\}, \mathbf{v}\right)$.
\dagger Sample $\left(\mathbf{A}, \mathbf{T}, \mathbf{v},\left(\mathbf{u}_{\mathbf{g}}\right)_{\mathbf{g} \in \mathcal{G}}\right)$.
\dagger Run kRISIS solver on $\left(\mathbf{A}, \mathbf{T}, \mathbf{v},\left(\mathbf{u}_{\mathbf{g}}\right)_{\mathbf{g} \in \mathcal{G}}\right)$ to obtain $\left(\mathbf{u}^{*}, s^{*}\right)$ such that

$$
\mathbf{A} \cdot \mathbf{u}^{*}=\mathbf{T} \cdot \mathbf{g}^{*}(\mathbf{v}) \cdot s^{*} \bmod q \quad \text { and } \quad\|\mathbf{u}\| \approx 0
$$

\dagger Run the knowledge-kRISIS extractor on the above algorithm to extract a vector \mathbf{p} satisfying

$$
\sum_{\mathbf{g} \in \mathcal{G}} p_{\mathbf{g}} \cdot \mathbf{g}(\mathbf{v})=s^{*} \cdot \mathbf{g}^{*}(\mathbf{v}) \bmod q \quad \quad \text { and } \quad\|\mathbf{p}\| \approx 0
$$

\dagger Let $\mathbf{p}^{*}=\left(p_{\mathbf{g}}\right)_{\mathbf{g} \in \mathcal{G} \cup\left\{g^{*}\right\}}$ where $p_{\mathbf{g}^{*}}:=-s^{*}$.
\dagger Output \mathbf{p}^{*}.
\dagger Clearly, $\sum_{\mathbf{g} \in \mathcal{G} \cup\left\{g^{*}\right\}} p_{\mathbf{g}} \cdot \mathbf{g}(\mathbf{v})=\mathbf{0} \bmod q$ and $\left\|\mathbf{p}^{*}\right\| \approx 0$.

Connections to NTRU and IdeaISVP

\dagger NTRU: Given $h=f \cdot g^{-1} \bmod q$ where $\|(f, g)\| \approx 0$, find f^{\prime}, g^{\prime} such that

$$
f^{\prime}+g^{\prime} \cdot h=0 \bmod q \quad \text { and } \quad\left\|\left(f^{\prime}, g^{\prime}\right)\right\| \approx 0
$$

Can be see as univariate degree-1 vSIS with special instance distribution.
\dagger Assuming decision NTRU, NTRU \leq vSIS. (*)
\dagger Assuming decision NTRU, worst-to-average reduction for vSIS. (*)
\dagger IdealSVP \leq NTRU $\xrightarrow{\text { generalise }}$ IdealSVP \leq vSIS. (*)
(*): For very restrictive parameters.

Trivial (Non-)Attacks

\dagger Solve vSIS as standard SIS
\dagger Hope that $v^{i}=0 \bmod q$ for some small i, then $p(X)=X^{i}$ is a trivial solution.
\ddagger Ruled out by sampling $v \leftarrow \$ \mathcal{R}_{q}^{\times}$.
\dagger Hope that $v^{i}=c \bmod q$ for some $c \approx 0$ for some small i, then $p(X)=X^{i}-c$ is a trivial solution.
\ddagger Number of elements in \mathcal{R}_{q} of norm at most β is $(2 \beta+1)^{\operatorname{deg}(\mathcal{R})}$.
\ddagger Let q be such that $\left(\frac{2 \beta+1}{q}\right)^{\operatorname{deg}(\mathcal{R})}=\operatorname{negl}(\lambda)$.
\ddagger Heuristically, think of the "multiplication-by-v" map $a \mapsto a \cdot v \bmod q$ as a random permutation over \mathcal{R}_{q}^{\times}.
\ddagger The probability of hitting an element of norm at most β is negligible.

Divide-and-Conquer Attack

Idea 1

\dagger Split an n-point vSIS problem into $f n / f$-point vSIS problems.
\dagger Split $V=\left\{v_{1}, \ldots, v_{n}\right\}$ into V_{1}, \ldots, V_{f} where $\left|V_{i}\right|=n / f$.
\dagger For each $i \in[f]$, find short polynomial $p_{i} \in \mathcal{R}[X]$ vanishing at V_{i}.
\dagger Output $p=\prod_{i=1}^{f} p_{i}$.

Idea 2

\dagger Split a 1-point vSIS problem over \mathcal{R} into $\operatorname{deg}(\mathcal{R})$ 1-point vSIS problems over \mathbb{Z}.
\dagger Suppose $\langle q \mathcal{R}\rangle$ splits into f (not necessarily prime) ideals.
\dagger Represent v in CRT basis by $\left(v_{1}, \ldots, v_{f}\right) \in \mathbb{Z}_{q}^{f}$.
\dagger For each $i \in[f]$, find short polynomial $p_{i} \in \mathbb{Z}[X]$ vanishing at v_{i}.
\dagger Output $p=\prod_{i=1}^{t} p_{i}$.

Divide-and-Conquer Attack

Non-Devastation

\dagger Norm of solution grows exponentially in f, the number of sub-problems.
\dagger Setting $q=\operatorname{poly}(\lambda) \Longrightarrow$ Can only afford $f=O(1)$.

